mindspore.ops.SparseSoftmaxCrossEntropyWithLogits

View Source On Gitee
class mindspore.ops.SparseSoftmaxCrossEntropyWithLogits(is_grad=False)[source]

Computes the softmax cross-entropy value between logits and sparse encoding labels.

Sets input logits as X, input label as Y, output as loss. The formula is as follows:

pij=softmax(Xij)=exp(xi)j=0N1exp(xj)lossij={ln(pij),j=yi0,jyiloss=ijlossij
Parameters

is_grad (bool, optional) – If True , this operation returns the computed gradient. Default: False .

Inputs:
  • logits (Tensor) - Input logits, with shape (N,C). Data type must be float16 or float32.

  • labels (Tensor) - Ground truth labels, with shape (N). Data type must be int32 or int64.

Outputs:

Tensor, if is_grad is False, the output tensor is the value of loss; if is_grad is True , the output tensor is the gradient of input with the same shape as logits.

Raises
  • TypeError – If is_grad is not a bool.

  • TypeError – If dtype of logits is neither float16 nor float32.

  • TypeError – If dtype of labels is neither int32 nor int64.

  • ValueError – If logits.shape[0]!=labels.shape[0].

Supported Platforms:

GPU CPU

Examples

>>> import mindspore
>>> from mindspore import Tensor, ops
>>> logits = Tensor([[2, 3, 1, 4, 5], [2, 1, 2, 4, 3]], mindspore.float32)
>>> labels = Tensor([0, 1], mindspore.int32)
>>> sparse_softmax_cross = ops.SparseSoftmaxCrossEntropyWithLogits()
>>> loss = sparse_softmax_cross(logits, labels)
>>> print(loss)
3.4878292
>>> sparse_softmax_cross_grad = ops.SparseSoftmaxCrossEntropyWithLogits(is_grad=True)
>>> loss_grad = sparse_softmax_cross_grad(logits, labels)
>>> print(loss_grad)
[[-0.48415753  0.04306427  0.00582811  0.11706084  0.3182043 ]
 [ 0.04007946 -0.4852556   0.04007946  0.2961494   0.10894729]]