mindspore.ops.Renorm
- class mindspore.ops.Renorm(p, dim, maxnorm)[source]
Renormalizes the sub-tensors along dimension dim, and each sub-tensor's p-norm should not exceed the 'maxnorm'. The values of current sub-tensor don't need change if the p-norm of the sub-tensor is less than maxnorm. Otherwise the sub-tensor needs to be modified to the original value of the corresponding position divided by the p-norm of the substensor and then multiplied by maxnorm.
Refer to
mindspore.ops.renorm()
for more details.- Parameters
- Inputs:
x (Tensor) - A Tensor, types: float32 or float16.
- Outputs:
Tensor, has the same dtype and shape as input.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> x = Tensor(np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3]]), mindspore.float32) >>> y = ops.Renorm(p=1, dim=0, maxnorm=5.)(x) >>> print(y) [[1. 1. 1. ] [1.6666666 1.6666666 1.6666666 ] [1.6666667 1.6666667 1.6666667 ]]