mindspore.ops.Pad
- class mindspore.ops.Pad(paddings)[source]
Pads the input tensor according to the paddings.
Refer to
mindspore.ops.pad()
for more details. Usemindspore.ops.pad()
instead if paddings has negative values.- Parameters
paddings (tuple) – The shape of parameter paddings is (N, 2). N is the rank of input data. All elements of paddings are int type. For the input in D th dimension, paddings[D, 0] indicates how many sizes to be extended ahead of the input tensor in the D th dimension, and paddings[D, 1] indicates how many sizes to be extended behind the input tensor in the D th dimension.
- Inputs:
input_x (Tensor) - Tensor to be padded. It has shape \((N, *)\), where \(*\) means any number of additional dimensions.
- Outputs:
Tensor, the tensor after padding.
- Raises
TypeError – If paddings is not a tuple.
TypeError – If input_x is not a Tensor.
ValueError – If shape of paddings is not \((N, 2)\).
ValueError – If paddings.size is not equal to 2 * len(input_x).
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, ops >>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32) >>> pad_op = ops.Pad(((1, 2), (2, 1))) >>> output = pad_op(input_x) >>> print(output) [[ 0. 0. 0. 0. 0. 0. ] [ 0. 0. -0.1 0.3 3.6 0. ] [ 0. 0. 0.4 0.5 -3.2 0. ] [ 0. 0. 0. 0. 0. 0. ] [ 0. 0. 0. 0. 0. 0. ]]