mindspore.ops.AllReduce

View Source On Gitee
class mindspore.ops.AllReduce(op=ReduceOp.SUM, group=GlobalComm.WORLD_COMM_GROUP)[source]

Reduces tensors across all devices in such a way that all devices will get the same final result, returns the tensor which is all reduced.

Note

The tensors must have the same shape and format in all processes of the collection.

Parameters
  • op (str, optional) – Specifies an operation used for element-wise reductions, like sum, prod, max, and min. On the CPU, only 'sum' is supported. Default: ReduceOp.SUM .

  • group (str, optional) – The communication group to work on. Default: GlobalComm.WORLD_COMM_GROUP , which means "hccl_world_group" in Ascend, and "nccl_world_group" in GPU.

Inputs:
  • input_x (Tensor) - The shape of tensor is \((x_1, x_2, ..., x_R)\).

Outputs:

Tensor, has the same shape of the input, i.e., \((x_1, x_2, ..., x_R)\). The contents depend on the specified operation.

Raises
  • TypeError – If any of op and group is not a str or the input's dtype is bool.

  • RuntimeError – If device target is invalid, or backend is invalid, or distributed initialization fails.

Supported Platforms:

Ascend GPU CPU

Examples

Note

Before running the following examples, you need to configure the communication environment variables.

For Ascend/GPU/CPU devices, it is recommended to use the msrun startup method without any third-party or configuration file dependencies. Please see the msrun start up for more details.

This example should be run with 2 devices.

>>> import numpy as np
>>> from mindspore.communication import init
>>> from mindspore import Tensor
>>> from mindspore.ops import ReduceOp
>>> import mindspore.nn as nn
>>> from mindspore import ops
>>>
>>> init()
>>> class Net(nn.Cell):
...     def __init__(self):
...         super(Net, self).__init__()
...         self.allreduce_sum = ops.AllReduce(ReduceOp.SUM)
...
...     def construct(self, x):
...         return self.allreduce_sum(x)
...
>>> input_ = Tensor(np.ones([2, 8]).astype(np.float32))
>>> net = Net()
>>> output = net(input_)
>>> print(output)
[[2. 2. 2. 2. 2. 2. 2. 2.]
 [2. 2. 2. 2. 2. 2. 2. 2.]]
Tutorial Examples: