mindspore.ops.AdaptiveAvgPool2D

View Source On Gitee
class mindspore.ops.AdaptiveAvgPool2D(output_size)[source]

AdaptiveAvgPool2D operation.

Refer to mindspore.ops.adaptive_avg_pool2d() for more details.

Warning

This is an experimental API that is subject to change or deletion.

Parameters

output_size (Union[int, tuple]) – The target output size. output_size can be a tuple \((H, W)\), or an int H for \((H, H)\). \(H\) and \(W\) can be int or None. If it is None, it means the output size is the same as the input size.

Inputs:
  • input_x (Tensor) - The input of AdaptiveAvgPool2D, which is a 3D or 4D tensor, with float16 ,float32 or float64 data type.

Outputs:

Tensor, with the same type as the input_x.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import Tensor, ops
>>> # case 1: output_size=(None, 2)
>>> input_x = Tensor(np.array([[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]],
...                            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]],
...                            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]), mindspore.float32)
>>> adaptive_avg_pool_2d = ops.AdaptiveAvgPool2D((None, 2))
>>> output = adaptive_avg_pool_2d(input_x)
>>> print(output)
[[[1.5 2.5]
  [4.5 5.5]
  [7.5 8.5]]
 [[1.5 2.5]
  [4.5 5.5]
  [7.5 8.5]]
 [[1.5 2.5]
  [4.5 5.5]
  [7.5 8.5]]]
>>> # case 2: output_size=2
>>> adaptive_avg_pool_2d = ops.AdaptiveAvgPool2D(2)
>>> output = adaptive_avg_pool_2d(input_x)
>>> print(output)
[[[3. 4.]
  [6. 7.]]
 [[3. 4.]
  [6. 7.]]
 [[3. 4.]
  [6. 7.]]]
>>> # case 3: output_size=(1, 2)
>>> adaptive_avg_pool_2d = ops.AdaptiveAvgPool2D((1, 2))
>>> output = adaptive_avg_pool_2d(input_x)
>>> print(output)
[[[4.5 5.5]]
 [[4.5 5.5]]
 [[4.5 5.5]]]