mindspore.mint.normal

View Source On Gitee
mindspore.mint.normal(mean, std, *, generator=None) Tensor[source]

Generates random numbers according to the standard Normal (or Gaussian) random number distribution.

Parameters
  • mean (Union[float, Tensor]) – Mean value of each element, the shape of the mean tensor should be the same as that of the std tensor.

  • std (Union[float, Tensor]) – Standard deviation for each element, the shape of the std tensor should be the same as that of the mean tensor. The value of std should be greater than or equal to 0.

Keyword Arguments

generator (generator, optional) – MindSpore generator. Default: None.

Returns

Outputs a tensor with the same shape as mean.

Raises

TypeError – If mean or std is not Union[float, Tensor].

Supported Platforms:

Ascend

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import mint
>>> from mindspore import Tensor
>>> mean = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
>>> std = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
>>> output = mint.normal(mean, std)
>>> print(output.shape)
(3,)
mindspore.mint.normal(mean, std=1.0) Tensor[source]

Similar to the function above, but the standard deviations are shared among all drawn elements.

Parameters
  • mean (Tensor) – Mean value of each element.

  • std (float, optional) – Standard deviation for each element. The value of std should be greater than or equal to 0. Default: 1.0.

Returns

Outputs a tensor with the same shape as mean.

Supported Platforms:

Ascend

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import mint
>>> from mindspore import Tensor
>>> mean = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
>>> output = mint.normal(mean, 1.0)
>>> print(output.shape)
(3,)
mindspore.mint.normal(mean, std, size) Tensor[source]

Similar to the function above, but the means and standard deviations are shared among all drawn elements. The result tensor has size given by size.

Parameters
  • mean (float) – Mean value of each element.

  • std (float) – Standard deviation for each element.

  • size (tuple) – output shape.

Returns

Outputs a tensor. The shape is specified as size.

Supported Platforms:

Ascend

Examples

>>> import mindspore
>>> import numpy as np
>>> from mindspore import mint
>>> from mindspore import Tensor
>>> output = mint.normal(1.0, 2.0, (2, 4))
>>> print(output.shape)
(2, 4)