mindspore.mint.nn.functional.adaptive_avg_pool3d
- mindspore.mint.nn.functional.adaptive_avg_pool3d(input, output_size)[source]
Performs 3D adaptive average pooling on a multi-plane input signal. That is, for any input size, the size of the specified output is
. The number of output features is equal to the number of input planes.Suppose the last 3 dimension size of x is
, the last 3 dimension size of output is .Warning
For Ascend, it is only supported on Atlas A2 Training Series Products. This is an experimental optimizer API that is subject to change or deletion.
- Parameters
- Returns
Tensor, with the same type as the input.
- Raises
TypeError – If input is not a Tensor.
ValueError – If the dimension of input is not 4D or 5D.
ValueError – If output_size value is not positive.
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor, mint >>> # case 1: output_size=(3, 3, 4) >>> output_size=(3, 3, 4) >>> input_val = np.random.randn(4, 3, 5, 6, 7) >>> input = Tensor(input_val, mindspore.float32) >>> output = mint.nn.functional.adaptive_avg_pool3d(input, output_size) >>> print(output.shape) (4, 3, 3, 3, 4) >>> # case 2: output_size=4 >>> output_size=5 >>> input_val = np.random.randn(2, 3, 8, 6, 12) >>> input = Tensor(input_val, mindspore.float32) >>> output = mint.nn.functional.adaptive_avg_pool3d(input, output_size) >>> print(output.shape) (2, 3, 5, 5, 5) >>> # case 3: output_size=(None, 4, 5) >>> output_size=(None, 4, 5) >>> input_val = np.random.randn(4, 1, 9, 10, 8) >>> input = Tensor(input_val, mindspore.float32) >>> output = mint.nn.functional.adaptive_avg_pool3d(input, output_size) >>> print(output.shape) (4, 1, 9, 4, 5)