mindspore.mint.minimum
- mindspore.mint.minimum(input, other)[source]
Compute the minimum of the two input tensors element-wise.
Note
Inputs of input and other comply with the implicit type conversion rules to make the data types consistent.
When the inputs are two tensors, dtypes of them cannot be bool at the same time.
When the inputs are one tensor and one scalar, the scalar could only be a constant.
Shapes of them are supposed to be broadcast.
If one of the elements being compared is a NaN, then that element is returned.
- Parameters
- Returns
Tensor
- Supported Platforms:
Ascend
Examples
>>> import mindspore >>> # case 1 : same data type >>> input = mindspore.tensor([1.0, 5.0, 3.0], mindspore.float32) >>> other = mindspore.tensor([4.0, 2.0, 6.0], mindspore.float32) >>> mindspore.mint.minimum(input, other) Tensor(shape=[3], dtype=Float32, value= [ 1.00000000e+00, 2.00000000e+00, 3.00000000e+00]) >>> >>> # case 2 : the data type is the one with higher precision or higher digits among the two inputs. >>> input = mindspore.tensor([1.0, 5.0, 3.0], mindspore.int64) >>> other = mindspore.tensor([4.0, 2.0, 6.0], mindspore.float64) >>> mindspore.mint.minimum(input, other) Tensor(shape=[3], dtype=Float64, value= [ 1.00000000e+00, 2.00000000e+00, 3.00000000e+00])