mindspore.mint.cummin
- mindspore.mint.cummin(input, dim)[source]
Returns a tuple (values, indices) where values is the cumulative minimum value of input Tensor input along the dimension dim, and indices is the index location of each minimum value.
\[\begin{split}\begin{array}{ll} \\ y_{i} = \min(x_{1}, x_{2}, ... , x_{i}) \end{array}\end{split}\]- Parameters
- Returns
tuple [Tensor], tuple of 2 Tensors, containing the cumulative minimum of elements and the index. The shape of each output tensor is the same as that of input input.
- Raises
TypeError – If input is not a Tensor.
TypeError – If input is a Tensor, but the type is complex or bool.
TypeError – If dim is not an int.
ValueError – If dim is out the range of [-input.ndim, input.ndim - 1].
Note
O2 mode is not supported in Ascend.
- Supported Platforms:
Ascend
Examples
>>> from mindspore import Tensor, mint >>> import mindspore >>> a = Tensor([-0.2284, -0.6628, 0.0975, 0.2680, -1.3298, -0.4220], mindspore.float32) >>> output = mint.cummin(a, dim=0) >>> print(output[0]) [-0.2284 -0.6628 -0.6628 -0.6628 -1.3298 -1.3298] >>> print(output[1]) [0 1 1 1 4 4]