mindspore.mint.argmin
- mindspore.mint.argmin(input, dim=None, keepdim=False)[source]
Return the indices of the minimum values of a tensor across a dimension.
- Parameters
input (Tensor) – Input tensor.
dim (Union[int, None], optional) – Specify the axis for calculation. If dim is
None
, the indices of the minimum value within the flattened input will be returned. Default:None
.keepdim (bool, optional) – Whether the output tensor retains the specified dimension. Ignored if dim is None. Default:
False
.
- Returns
Tensor, indices of the minimum values of the input tensor across a dimension.
- Raises
TypeError – If keepdim is not bool.
ValueError – If dim is out of range.
- Supported Platforms:
Ascend
Examples
>>> import numpy as np >>> from mindspore import Tensor >>> from mindspore import mint >>> x = Tensor(np.array([[1, 20, 5], [67, 8, 9], [130, 24, 15]]).astype(np.float32)) >>> output = mint.argmin(x, dim=-1) >>> print(output) [0 1 2]