mindspore.profiler.profiler.analyse
- mindspore.profiler.profiler.analyse(profiler_path: str, max_process_number: int = os.cpu_count() // 2, pretty=False, step_list=None, data_simplification=True)[source]
Analyze training performance data offline, which is invoked after performance data collection is completed.
- Parameters
profiler_path (str) – The path to profiling data that needs to be analyzed offline, specified to the upper directory
*_ascend_ms
.max_process_number (int, optional) – Maximum number of processes. The default value is
os.cpu_count() // 2
.pretty (bool, optional) – Format the JSON file. Default:
False
, indicating that the formatting is not performed.step_list (list, optional) – Only the performance data of the specified step is parsed. The specified step must be a consecutive integer. It supports CallBack collection only in GRAPH mode, and can only slice the CANN layer and the following information. Default value:
None
, that is, full resolution.data_simplification (bool, optional) – Whether to enable data simplification. Default:
True
, indicating the data simplification is enabled.
Examples
>>> from mindspore.profiler.profiler import analyse >>> analyse(profiler_path="./profiling_path")