mindspore.load_param_into_net
- mindspore.load_param_into_net(net, parameter_dict, strict_load=False, remove_redundancy=False)[source]
Load parameters into network, return parameter list that are not loaded in the network.
Note
When loading a parameter dict that has removed redundancy, the network should be compiled.
- Parameters
net (Cell) – The network where the parameters will be loaded.
parameter_dict (dict) – The dictionary generated by load checkpoint file, it is a dictionary consisting of key: parameters's name, value: parameter.
strict_load (bool) – Whether to strict load the parameter into net. If
False
, it will load parameter into net when parameter name's suffix in checkpoint file is the same as the parameter in the network. When the types are inconsistent perform type conversion on the parameters of the same type, such as float32 to float16. Default:False
.remove_redundancy (bool) – Whether to enable loading of checkpoint saved with redundancy removal. Redundancy removal refers to eliminating redundant data in data parallelism mode. Default:
False
, means redundant-free loading is not enabled.
- Returns
param_not_load (List), the parameter name in model which are not loaded into the network.
ckpt_not_load (List), the parameter name in checkpoint file which are not loaded into the network.
- Raises
TypeError – Argument is not a Cell, or parameter_dict is not a Parameter dictionary.
Examples
>>> import mindspore as ms >>> >>> # Define the network structure of LeNet5. Refer to >>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py >>> net = LeNet5() >>> ckpt_file_name = "./checkpoint/LeNet5-1_32.ckpt" >>> param_dict = ms.load_checkpoint(ckpt_file_name, filter_prefix="conv1") >>> param_not_load, _ = ms.load_param_into_net(net, param_dict) >>> print(param_not_load) ['conv1.weight']
- Tutorial Examples: