mindspore.Tensor.scatter
- Tensor.scatter(dim, index, src) Tensor
Update the value in src to self according to the specified index. For a 3-D tensor, the output will be:
output[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0 output[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1 output[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2
Note
The backward is supported only for the case src.shape == index.shape when src is a tensor. The rank of the input tensor self must be at least 1.
- Parameters
dim (int) – Which axis to scatter. Accepted range is [-r, r) where r = rank(self).
index (Tensor) – The index to do update operation whose data must be positive number with type of int32 or int64. Same rank as self . And accepted range is [-s, s) where s is the size along axis.
src (Tensor, float) – The data doing the update operation with self. Can be a tensor with the same data type as self or a float number to scatter.
- Returns
Tensor, has the same shape and type as self .
- Raises
TypeError – If index is neither int32 nor int64.
ValueError – If rank of any of self , index and src is less than 1.
ValueError – If the rank of src is not equal to the rank of self .
TypeError – If the data types of self and src have different dtypes.
RuntimeError – If index has negative elements.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import numpy as np >>> import mindspore as ms >>> from mindspore import Tensor >>> input = Tensor(np.array([[1, 2, 3, 4, 5]]), dtype=ms.float32) >>> src = Tensor(np.array([[8, 8]]), dtype=ms.float32) >>> index = Tensor(np.array([[2, 4]]), dtype=ms.int64) >>> out = input.scatter(dim=1, index=index, src=src) >>> print(out) [[1. 2. 8. 4. 8.]] >>> input = Tensor(np.zeros((5, 5)), dtype=ms.float32) >>> src = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), dtype=ms.float32) >>> index = Tensor(np.array([[0, 0, 0], [2, 2, 2], [4, 4, 4]]), dtype=ms.int64) >>> out = input.scatter(dim=0, index=index, src=src) >>> print(out) [[1. 2. 3. 0. 0.] [0. 0. 0. 0. 0.] [4. 5. 6. 0. 0.] [0. 0. 0. 0. 0.] [7. 8. 9. 0. 0.]] >>> input = Tensor(np.zeros((5, 5)), dtype=ms.float32) >>> src = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), dtype=ms.float32) >>> index = Tensor(np.array([[0, 2, 4], [0, 2, 4], [0, 2, 4]]), dtype=ms.int64) >>> out = input.scatter(dim=1, index=index, src=src) >>> print(out) [[1. 0. 2. 0. 3.] [4. 0. 5. 0. 6.] [7. 0. 8. 0. 9.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]]
- Tensor.scatter(axis, index, src) Tensor
Update the value in src to self according to the specified index. Refer to
mindspore.ops.tensor_scatter_elements()
for more details.Note
The backward is supported only for the case src.shape == index.shape. The rank of the input tensor self must be at least 1.
- Parameters
axis (int) – Which axis to scatter. Accepted range is [-r, r) where r = rank(self).
index (Tensor) – The index to do update operation whose data must be positive number with type of int32 or int64. Same rank as self . And accepted range is [-s, s) where s is the size along axis.
src (Tensor, float) – The data doing the update operation with self. Can be a tensor with the same data type as self or a float number to scatter.
- Returns
Tensor, has the same shape and type as self .
- Raises
TypeError – If index is neither int32 nor int64.
ValueError – If rank of any of self , index and src is less than 1.
ValueError – If the rank of src is not equal to the rank of self .
TypeError – If the data types of self and src have different dtypes.
RuntimeError – If index has negative elements.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import numpy as np >>> import mindspore as ms >>> from mindspore import Tensor >>> input = Tensor(np.array([[1, 2, 3, 4, 5]]), dtype=ms.float32) >>> src = Tensor(np.array([[8, 8]]), dtype=ms.float32) >>> index = Tensor(np.array([[2, 4]]), dtype=ms.int64) >>> out = input.scatter(axis=1, index=index, src=src) >>> print(out) [[1. 2. 8. 4. 8.]] >>> input = Tensor(np.zeros((5, 5)), dtype=ms.float32) >>> src = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), dtype=ms.float32) >>> index = Tensor(np.array([[0, 0, 0], [2, 2, 2], [4, 4, 4]]), dtype=ms.int64) >>> out = input.scatter(axis=0, index=index, src=src) >>> print(out) [[1. 2. 3. 0. 0.] [0. 0. 0. 0. 0.] [4. 5. 6. 0. 0.] [0. 0. 0. 0. 0.] [7. 8. 9. 0. 0.]] >>> input = Tensor(np.zeros((5, 5)), dtype=ms.float32) >>> src = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), dtype=ms.float32) >>> index = Tensor(np.array([[0, 2, 4], [0, 2, 4], [0, 2, 4]]), dtype=ms.int64) >>> out = input.scatter(axis=1, index=index, src=src) >>> print(out) [[1. 0. 2. 0. 3.] [4. 0. 5. 0. 6.] [7. 0. 8. 0. 9.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]]