mindspore.Tensor.prod
- Tensor.prod(dim, keepdim, dtype) Tensor
Reduces a dimension of a tensor by multiplying all elements in the dimension, by default. And also can reduce a dimension of self along the dim. Determine whether the dimensions of the output and self are the same by controlling keepdim.
- Parameters
dim (Union[int, tuple(int), list(int), Tensor], optional) – The dimensions to reduce. Default:
None
, reduce all dimensions. Only constant value is allowed. Assume the rank of self is r, and the value range is [-r,r).keepdim (bool, optional) – If
True
, keep these reduced dimensions and the length is 1. IfFalse
, don't keep these dimensions. Default:False
.dtype (
mindspore.dtype
, optional) – The desired data type of returned Tensor. Default:None
.
- Returns
Tensor.
If dim is
None
, and keepdim isFalse
, the output is a 0-D tensor representing the product of all elements in the self tensor.If dim is int, set as 1, and keepdim is
False
, the shape of output is \((self_0, self_2, ..., self_R)\).If dim is tuple(int) or list(int), set as (1, 2), and keepdim is
False
, the shape of output is \((self_0, self_3, ..., self_R)\).If dim is 1-D Tensor, set as [1, 2], and keepdim is
False
, the shape of output is \((self_0, self_3, ..., self_R)\).
- Raises
TypeError – If dim is not one of the following: int, Tuple, list or Tensor.
TypeError – If keepdim is not a bool.
ValueError – If dim is out of range.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) >>> output = Tensor.pord(x, 1, True) >>> result = output.shape >>> print(result) (3, 1, 5, 6) >>> # case 1: Reduces a dimension by multiplying all elements in the dimension. >>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]], ... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]], ... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mindspore.float32) >>> output = Tensor.prod(x) >>> print(output) 2.2833798e+33 >>> print(output.shape) () >>> # case 2: Reduces a dimension along axis 0. >>> output = Tensor.prod(x, 0, True) >>> print(output) [[[ 28. 28. 28. 28. 28. 28.] [ 80. 80. 80. 80. 80. 80.] [162. 162. 162. 162. 162. 162.]]] >>> # case 3: Reduces a dimension along axis 1. >>> output = Tensor.prod(x, 1, True) >>> print(output) [[[ 6. 6. 6. 6. 6. 6.]] [[120. 120. 120. 120. 120. 120.]] [[504. 504. 504. 504. 504. 504.]]] >>> # case 4: Reduces a dimension along axis 2. >>> output = Tensor.prod(x, 2, True) >>> print(output) [[[1.00000e+00] [6.40000e+01] [7.29000e+02]] [[4.09600e+03] [1.56250e+04] [4.66560e+04]] [[1.17649e+05] [2.62144e+05] [5.31441e+05]]]
- Tensor.prod(axis, keep_dims, dtype) Tensor
For more details, please refer to
mindspore.ops.prod()
.