mindspore.Tensor.median
- Tensor.median(axis=- 1, keepdims=False) Tuple of Tensors
Computes the median and indices of input tensor.
Warning
indices does not necessarily contain the first occurrence of each median value found in the input, unless it is unique. The specific implementation of this API is device-specific. The results may be different on CPU and GPU.
- Parameters
- Returns
y (Tensor) - Returns the median value along the specified dimension. And It has the same dtype as the input.
indices (Tensor) - The index of the median. And the dtype is int64.
- Raises
TypeError – If axis is not an int.
TypeError – If keepdims is not a bool.
ValueError – If axis is not in range of [-x.dim, x.dim-1].
- Supported Platforms:
GPU
CPU
Examples
>>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.array([[0.57, 0.11, 0.21],[0.38, 0.50, 0.57], [0.36, 0.16, 0.44]]).astype(np.float32)) >>> y = x.median(axis=0, keepdims=False) >>> print(y) (Tensor(shape=[3], dtype=Float32, value= [ 3.79999995e-01, 1.59999996e-01, 4.39999998e-01]), Tensor(shape=[3], dtype=Int64, value= [1, 2, 2]))
- Tensor.median() Tensor
Return the median of the input.
- Returns
y (Tensor) - Output median.
- Supported Platforms:
Ascend
- Tensor.median(dim=- 1, keepdim=False) Tuple of Tensors
Output the median on the specified dimension
dim
and its corresponding index. Ifdim
is None, calculate the median of all elements in the Tensor.- Parameters
- Returns
y (Tensor) - Output median, with the same data type as
input
.If
dim
isNone
,y
only has one element.If
keepdim
isTrue
, they
has the same shape as theinput
except the shape ofy
in dimension dim is size 1.Otherwise, the
y
lacks dim dimension than input.
indices (Tensor) - The index of the median. Shape is consistent with
y
, with a data type of int64.
- Raises
TypeError – If
dim
is not an int.TypeError – If
keepdim
is not a bool.ValueError – If
dim
is not in range of [-x.dim, x.dim-1].
- Supported Platforms:
Ascend
Examples
>>> import numpy as np >>> from mindspore import Tensor >>> x = Tensor(np.array([[0.57, 0.11, 0.21],[0.38, 0.50, 0.57], [0.36, 0.16, 0.44]]).astype(np.float32)) >>> y = x.median(dim=0, keepdim=False) >>> print(y) (Tensor(shape=[3], dtype=Float32, value= [ 3.79999995e-01, 1.59999996e-01, 4.39999998e-01]), Tensor(shape=[3], dtype=Int64, value= [1, 2, 2]))