mindspore.Tensor.hardshrink
- Tensor.hardshrink(lambd=0.5) Tensor
Hard Shrink activation function. Calculates the output according to the input elements.
The formula is defined as follows:
\[\begin{split}\text{HardShrink}(x) = \begin{cases} x, & \text{ if } x > \lambda \\ x, & \text{ if } x < -\lambda \\ 0, & \text{ otherwise } \end{cases}\end{split}\]HardShrink Activation Function Graph:
Note
The input Tensor. \(x\) in the above formula. Supported dtypes:
Ascend: float16, float32, bfloat16.
CPU/GPU: float16, float32.
- Parameters
lambd (number, optional) – The threshold \(\lambda\) defined by the Hard Shrink formula. Default:
0.5
.- Returns
Tensor, has the same data type and shape as the input self.
- Raises
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> import mindspore >>> import numpy as np >>> from mindspore import Tensor >>> input = Tensor(np.array([[0.5, 1, 2.0], [0.0533, 0.0776, -2.1233]]), mindspore.float32) >>> output = input.hardshrink() >>> print(output) [[ 0. 1. 2. ] [ 0. 0. -2.1233]]