mindspore.dataset.vision.MixUpBatch
- class mindspore.dataset.vision.MixUpBatch(alpha=1.0)[source]
Apply MixUp transformation on input batch of images and labels. Each image is multiplied by a random weight (lambda) and then added to a randomly selected image from the batch multiplied by (1 - lambda). The same formula is also applied to the one-hot labels.
The lambda is generated based on the specified alpha value. Two coefficients x1, x2 are randomly generated in the range [alpha, 1], and lambda = (x1 / (x1 + x2)).
Note that you need to make labels into one-hot format and batched before calling this operation.
- Parameters
alpha (float, optional) – Hyperparameter of beta distribution. The value must be positive. Default:
1.0
.- Raises
TypeError – If alpha is not of type float.
ValueError – If alpha is not positive.
RuntimeError – If given tensor shape is not <N, H, W, C> or <N, C, H, W>.
- Supported Platforms:
CPU
Examples
>>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> import mindspore.dataset.transforms as transforms >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(64, 64, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> numpy_slices_dataset = numpy_slices_dataset.map( ... operations=lambda img: (data, np.random.randint(0, 5, (3, 1))), ... input_columns=["image"], ... output_columns=["image", "label"]) >>> onehot_op = transforms.OneHot(num_classes=10) >>> numpy_slices_dataset= numpy_slices_dataset.map(operations=onehot_op, ... input_columns=["label"]) >>> mixup_batch_op = vision.MixUpBatch(alpha=0.9) >>> numpy_slices_dataset = numpy_slices_dataset.batch(5) >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=mixup_batch_op, ... input_columns=["image", "label"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... print(item["label"].shape, item["label"].dtype) ... break (5, 64, 64, 3) uint8 (5, 3, 10) float32 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 255, (2, 10, 10, 3)).astype(np.uint8) >>> label = np.array([[0, 1], [1, 0]]) >>> output = vision.MixUpBatch(1)(data, label) >>> print(output[0].shape, output[0].dtype) (2, 10, 10, 3) uint8 >>> print(output[1].shape, output[1].dtype) (2, 2) float32
- Tutorial Examples: