mindspore.dataset.vision.HWC2CHW
- class mindspore.dataset.vision.HWC2CHW[source]
Transpose the input image from shape <H, W, C> to <C, H, W>. If the input image is of shape <H, W>, it will remain unchanged.
Note
This operation is executed on the CPU by default, but it is also supported to be executed on the GPU or Ascend via heterogeneous acceleration.
- Raises
RuntimeError – If shape of the input image is not <H, W> or <H, W, C>.
- Supported Platforms:
CPU
GPU
Ascend
Examples
>>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> transforms_list = [vision.RandomHorizontalFlip(0.75), ... vision.RandomCrop(64), ... vision.HWC2CHW()] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms_list, input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (3, 64, 64) uint8 >>> >>> # Use the transform in eager mode >>> data = np.array([[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]], dtype=np.uint8).reshape((2, 2, 3)) >>> output = vision.HWC2CHW()(data) >>> print(output.shape, output.dtype) (3, 2, 2) uint8
- Tutorial Examples: