mindspore.dataset.vision.CutMixBatch
- class mindspore.dataset.vision.CutMixBatch(image_batch_format, alpha=1.0, prob=1.0)[source]
Apply CutMix transformation on input batch of images and labels. Note that you need to make labels into one-hot format and batched before calling this operation.
- Parameters
image_batch_format (ImageBatchFormat) – The method of padding. Can be any of [ImageBatchFormat.NHWC, ImageBatchFormat.NCHW].
alpha (float, optional) – Hyperparameter of beta distribution, must be larger than 0. Default:
1.0
.prob (float, optional) – The probability by which CutMix is applied to each image, which must be in range: [0.0, 1.0]. Default:
1.0
.
- Raises
TypeError – If image_batch_format is not of type
mindspore.dataset.vision.ImageBatchFormat
.TypeError – If alpha is not of type float.
TypeError – If prob is not of type float.
ValueError – If alpha is less than or equal 0.
ValueError – If prob is not in range [0.0, 1.0].
RuntimeError – If given tensor shape is not <H, W, C>.
- Supported Platforms:
CPU
Examples
>>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.transforms as transforms >>> import mindspore.dataset.vision as vision >>> from mindspore.dataset.vision import ImageBatchFormat >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(28, 28, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> numpy_slices_dataset = numpy_slices_dataset.map( ... operations=lambda img: (data, np.random.randint(0, 5, (3, 1))), ... input_columns=["image"], ... output_columns=["image", "label"]) >>> onehot_op = transforms.OneHot(num_classes=10) >>> numpy_slices_dataset= numpy_slices_dataset.map(operations=onehot_op, input_columns=["label"]) >>> cutmix_batch_op = vision.CutMixBatch(ImageBatchFormat.NHWC, 1.0, 0.5) >>> numpy_slices_dataset = numpy_slices_dataset.batch(5) >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=cutmix_batch_op, ... input_columns=["image", "label"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... print(item["label"].shape, item["label"].dtype) ... break (5, 28, 28, 3) uint8 (5, 3, 10) float32 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 255, (3, 3, 10, 10)).astype(np.uint8) >>> label = np.array([[0, 1], [1, 0], [1, 0]]) >>> output = vision.CutMixBatch(vision.ImageBatchFormat.NCHW, 1.0, 1.0)(data, label) >>> print(output[0].shape, output[0].dtype) (3, 3, 10, 10) uint8 >>> print(output[1].shape, output[1].dtype) (3, 2) float32
- Tutorial Examples: