mindspore.dataset.vision.Affine
- class mindspore.dataset.vision.Affine(degrees, translate, scale, shear, resample=Inter.NEAREST, fill_value=0)[source]
Apply Affine transformation to the input image, keeping the center of the image unchanged.
Supports Ascend hardware acceleration and can be enabled through the .device("Ascend") method.
- Parameters
degrees (float) – Rotation angle in degrees between -180 and 180, clockwise direction.
translate (Sequence[float, float]) – The horizontal and vertical translations, must be a sequence of size 2 and value between -1 and 1.
scale (float) – Scaling factor, which must be positive.
shear (Union[float, Sequence[float, float]]) – Shear angle value in degrees between -180 to 180. If float is provided, shear along the x axis with this value, without shearing along the y axis; If Sequence[float, float] is provided, shear along the x axis and y axis with these two values separately.
resample (Inter, optional) – Image interpolation method defined by
Inter
. Default:Inter.NEAREST
.fill_value (Union[int, tuple[int, int, int]], optional) – Optional fill_value to fill the area outside the transform in the output image. There must be three elements in tuple and the value of single element is [0, 255]. Default:
0
.
- Raises
TypeError – If degrees is not of type float.
TypeError – If translate is not of type Sequence[float, float].
TypeError – If scale is not of type float.
ValueError – If scale is non positive.
TypeError – If shear is not of float or Sequence[float, float].
TypeError – If fill_value is not of type int or tuple[int, int, int].
RuntimeError – If shape of the input image is not <H, W> or <H, W, C>.
- Supported Platforms:
CPU
Ascend
Examples
>>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> from mindspore.dataset.vision import Inter >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> affine_op = vision.Affine(degrees=15, translate=[0.2, 0.2], scale=1.1, shear=[1.0, 1.0], ... resample=Inter.BILINEAR) >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=[affine_op], input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.array([[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]], dtype=np.uint8).reshape((2, 2, 3)) >>> output = vision.Affine(degrees=15, translate=[0.2, 0.2], scale=1.1, ... shear=[1.0, 1.0], resample=Inter.BILINEAR)(data) >>> print(output.shape, output.dtype) (2, 2, 3) uint8
- Tutorial Examples:
- device(device_target='CPU')[source]
Set the device for the current operator execution.
When the device is Ascend, input shape should be limited from [4, 6] to [32768, 32768].
- Parameters
device_target (str, optional) – The operator will be executed on this device. Currently supports
CPU
andAscend
. Default:CPU
.- Raises
TypeError – If device_target is not of type str.
ValueError – If device_target is not within the valid set of ['CPU', 'Ascend'].
- Supported Platforms:
CPU
Ascend
Examples
>>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.vision as vision >>> from mindspore.dataset.vision import Inter >>> >>> # Use the transform in dataset pipeline mode >>> data = np.random.randint(0, 255, size=(1, 100, 100, 3)).astype(np.uint8) >>> numpy_slices_dataset = ds.NumpySlicesDataset(data, ["image"]) >>> affine_op = vision.Affine(degrees=15, translate=[0.2, 0.2], scale=1.1, ... shear=[1.0, 1.0], resample=Inter.BILINEAR).device("Ascend") >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=[affine_op], input_columns=["image"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["image"].shape, item["image"].dtype) ... break (100, 100, 3) uint8 >>> >>> # Use the transform in eager mode >>> data = np.random.randint(0, 255, size=(100, 100, 3)).astype(np.uint8) >>> output = vision.Affine(degrees=15, translate=[0.2, 0.2], scale=1.1, ... shear=[1.0, 1.0], resample=Inter.BILINEAR).device("Ascend")(data) >>> print(output.shape, output.dtype) (100, 100, 3) uint8
- Tutorial Examples: