mindspore.dataset.audio.ComplexNorm
- class mindspore.dataset.audio.ComplexNorm(power=1.0)[source]
Compute the norm of complex number sequence.
Note
The shape of the audio waveform to be processed needs to be <…, complex=2>. The first dimension represents the real part while the second represents the imaginary.
- Parameters
power (float, optional) – Power of the norm, which must be non-negative. Default:
1.0
.- Raises
TypeError – If power is not of type float.
ValueError – If power is a negative number.
RuntimeError – If input tensor is not in shape of <…, complex=2>.
- Supported Platforms:
CPU
Examples
>>> import numpy as np >>> import mindspore.dataset as ds >>> import mindspore.dataset.audio as audio >>> >>> # Use the transform in dataset pipeline mode >>> waveform = np.random.random([5, 16, 2]) # 5 samples >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"]) >>> transforms = [audio.ComplexNorm()] >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"]) >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True): ... print(item["audio"].shape, item["audio"].dtype) ... break (16,) float64 >>> >>> # Use the transform in eager mode >>> waveform = np.random.random([16, 2]) # 1 samples >>> output = audio.ComplexNorm()(waveform) >>> print(output.shape, output.dtype) (16,) float64
- Tutorial Examples: