Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

PR

Just a small problem.

I can fix it online!

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.dataset.audio.BandpassBiquad

View Source On Gitee
class mindspore.dataset.audio.BandpassBiquad(sample_rate, central_freq, Q=0.707, const_skirt_gain=False)[source]

Design two-pole Butterworth band-pass filter for audio waveform.

The frequency response of the Butterworth filter is maximally flat (i.e. has no ripples) in the passband and rolls off towards zero in the stopband.

The system function of Butterworth band-pass filter is:

H(s)={ss2+sQ+1,if const_skirt_gain=True;sQs2+sQ+1,if const_skirt_gain=False.

Similar to SoX implementation.

Note

The shape of the audio waveform to be processed needs to be <…, time>.

Parameters
  • sample_rate (int) – Sampling rate (in Hz), which can't be zero.

  • central_freq (float) – Central frequency (in Hz).

  • Q (float, optional) – Quality factor , in range of (0, 1]. Default: 0.707.

  • const_skirt_gain (bool, optional) – If True, uses a constant skirt gain (peak gain = Q); If False, uses a constant 0dB peak gain. Default: False.

Raises
  • TypeError – If sample_rate is not of type int.

  • ValueError – If sample_rate is 0.

  • TypeError – If central_freq is not of type float.

  • TypeError – If Q is not of type float.

  • ValueError – If Q is not in range of (0, 1].

  • TypeError – If const_skirt_gain is not of type bool.

  • RuntimeError – If input tensor is not in shape of <…, time>.

Supported Platforms:

CPU

Examples

>>> import numpy as np
>>> import mindspore.dataset as ds
>>> import mindspore.dataset.audio as audio
>>>
>>> # Use the transform in dataset pipeline mode
>>> waveform = np.random.random([5, 16])  # 5 samples
>>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
>>> transforms = [audio.BandpassBiquad(44100, 200.0)]
>>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
>>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
...     print(item["audio"].shape, item["audio"].dtype)
...     break
(16,) float64
>>>
>>> # Use the transform in eager mode
>>> waveform = np.random.random([16])  # 1 sample
>>> output = audio.BandpassBiquad(44100, 200.0)(waveform)
>>> print(output.shape, output.dtype)
(16,) float64
Tutorial Examples: