mindspore.dataset.CelebADataset
- class mindspore.dataset.CelebADataset(dataset_dir, num_parallel_workers=None, shuffle=None, usage='all', sampler=None, decode=False, extensions=None, num_samples=None, num_shards=None, shard_id=None, cache=None, decrypt=None)[source]
CelebA(CelebFaces Attributes) dataset.
Only support to read list_attr_celeba.txt currently, which is the attribute annotations of the dataset. The generated dataset has two columns:
[image, attr]
. The tensor of columnimage
is of the uint8 type. The tensor of columnattr
is of the uint32 type and one hot encoded.- Parameters
dataset_dir (str) – Path to the root directory that contains the dataset.
num_parallel_workers (int, optional) – Number of worker threads to read the data. Default:
None
, will use global default workers(8), it can be set bymindspore.dataset.config.set_num_parallel_workers()
.shuffle (bool, optional) – Whether to perform shuffle on the dataset. Default:
None
.usage (str, optional) – Specify the
'train'
,'valid'
,'test'
part or'all'
parts of dataset. Default:'all'
, will read all samples.sampler (Sampler, optional) – Object used to choose samples from the dataset. Default:
None
.decode (bool, optional) – Whether to decode the images after reading. Default:
False
.extensions (list[str], optional) – List of file extensions to be included in the dataset. Default:
None
.num_samples (int, optional) – The number of images to be included in the dataset. Default:
None
, will include all images.num_shards (int, optional) – Number of shards that the dataset will be divided into. Default:
None
. When this argument is specified, num_samples reflects the maximum sample number of per shard. Used in data parallel training .shard_id (int, optional) – The shard ID within num_shards . Default:
None
. This argument can only be specified when num_shards is also specified.cache (DatasetCache, optional) – Use tensor caching service to speed up dataset processing. More details: Single-Node Data Cache . Default:
None
, which means no cache is used.decrypt (callable, optional) – Image decryption function, which accepts the path of the encrypted image file and returns the decrypted bytes data. Default:
None
, no decryption.
- Raises
RuntimeError – If dataset_dir does not contain data files.
RuntimeError – If sampler and shuffle are specified at the same time.
RuntimeError – If sampler and num_shards/shard_id are specified at the same time.
RuntimeError – If num_shards is specified but shard_id is None.
RuntimeError – If shard_id is specified but num_shards is None.
ValueError – If shard_id is not in range of [0, num_shards ).
ValueError – If num_parallel_workers exceeds the max thread numbers.
ValueError – If usage is not
'train'
,'valid'
,'test'
or'all'
.
- Tutorial Examples:
Note
The parameters num_samples , shuffle , num_shards , shard_id can be used to control the sampler used in the dataset, and their effects when combined with parameter sampler are as follows.
Parameter sampler
Parameter num_shards / shard_id
Parameter shuffle
Parameter num_samples
Sampler Used
mindspore.dataset.Sampler type
None
None
None
sampler
numpy.ndarray,list,tuple,int type
/
/
num_samples
SubsetSampler(indices = sampler , num_samples = num_samples )
iterable type
/
/
num_samples
IterSampler(sampler = sampler , num_samples = num_samples )
None
num_shards / shard_id
None / True
num_samples
DistributedSampler(num_shards = num_shards , shard_id = shard_id , shuffle = True , num_samples = num_samples )
None
num_shards / shard_id
False
num_samples
DistributedSampler(num_shards = num_shards , shard_id = shard_id , shuffle = False , num_samples = num_samples )
None
None
None / True
None
RandomSampler(num_samples = num_samples )
None
None
None / True
num_samples
RandomSampler(replacement = True , num_samples = num_samples )
None
None
False
num_samples
SequentialSampler(num_samples = num_samples )
Examples
>>> import mindspore.dataset as ds >>> celeba_dataset_dir = "/path/to/celeba_dataset_directory" >>> >>> # Read 5 samples from CelebA dataset >>> dataset = ds.CelebADataset(dataset_dir=celeba_dataset_dir, usage='train', num_samples=5) >>> >>> # Note: In celeba dataset, each data dictionary owns keys "image" and "attr"
About CelebA dataset:
CelebFaces Attributes Dataset (CelebA) is a large-scale dataset with more than 200K celebrity images, each with 40 attribute annotations.
The images in this dataset cover large pose variations and background clutter. CelebA has large diversities, large quantities, and rich annotations, including
10,177 number of identities,
202,599 number of images,
5 landmark locations, 40 binary attributes annotations per image.
The dataset can be employed as the training and test sets for the following computer vision tasks: attribute recognition, detection, landmark (or facial part) and localization.
Original CelebA dataset structure:
. └── CelebA ├── README.md ├── Img │ ├── img_celeba.7z │ ├── img_align_celeba_png.7z │ └── img_align_celeba.zip ├── Eval │ └── list_eval_partition.txt └── Anno ├── list_landmarks_celeba.txt ├── list_landmarks_align_celeba.txt ├── list_bbox_celeba.txt ├── list_attr_celeba.txt └── identity_CelebA.txt
You can unzip the dataset files into the following structure and read by MindSpore's API.
. └── celeba_dataset_directory ├── list_attr_celeba.txt ├── 000001.jpg ├── 000002.jpg ├── 000003.jpg ├── ...
Citation:
@article{DBLP:journals/corr/LiuLWT14, author = {Ziwei Liu and Ping Luo and Xiaogang Wang and Xiaoou Tang}, title = {Deep Learning Attributes in the Wild}, journal = {CoRR}, volume = {abs/1411.7766}, year = {2014}, url = {http://arxiv.org/abs/1411.7766}, archivePrefix = {arXiv}, eprint = {1411.7766}, timestamp = {Tue, 10 Dec 2019 15:37:26 +0100}, biburl = {https://dblp.org/rec/journals/corr/LiuLWT14.bib}, bibsource = {dblp computer science bibliography, https://dblp.org}, howpublished = {http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html} }
Pre-processing Operation
Apply a function in this dataset. |
|
Concatenate the dataset objects in the input list. |
|
Filter dataset by prediction. |
|
Map func to each row in dataset and flatten the result. |
|
Apply each operation in operations to this dataset. |
|
The specified columns will be selected from the dataset and passed into the pipeline with the order specified. |
|
Rename the columns in input datasets. |
|
Repeat this dataset count times. |
|
Reset the dataset for next epoch. |
|
Save the dynamic data processed by the dataset pipeline in common dataset format. |
|
Shuffle the dataset by creating a cache with the size of buffer_size . |
|
Skip the first N elements of this dataset. |
|
Split the dataset into smaller, non-overlapping datasets. |
|
Take the first specified number of samples from the dataset. |
|
Zip the datasets in the sense of input tuple of datasets. |
Batch
Combine batch_size number of consecutive rows into batch which apply per_batch_map to the samples first. |
|
Bucket elements according to their lengths. |
|
Combine batch_size number of consecutive rows into batch which apply pad_info to the samples first. |
Iterator
Create an iterator over the dataset that yields samples of type dict, while the key is the column name and the value is the data. |
|
Create an iterator over the dataset that yields samples of type list, whose elements are the data for each column. |
Attribute
Return the size of batch. |
|
Get the mapping dictionary from category names to category indexes. |
|
Return the names of the columns in dataset. |
|
Return the number of batches in an epoch. |
|
Get the replication times in RepeatDataset. |
|
Get the column index, which represents the corresponding relationship between the data column order and the network when using the sink mode. |
|
Get the number of classes in a dataset. |
|
Get the shapes of output data. |
|
Get the types of output data. |
Apply Sampler
Add a child sampler for the current dataset. |
|
Replace the last child sampler of the current dataset, remaining the parent sampler unchanged. |
Others
Release a blocking condition and trigger callback with given data. |
|
Add a blocking condition to the input Dataset and a synchronize action will be applied. |
|
Serialize a pipeline into JSON string and dump into file if filename is provided. |