文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.Adam

class mindspore.ops.Adam(use_locking=False, use_nesterov=False)[source]

Updates gradients by the Adaptive Moment Estimation (Adam) algorithm.

The Adam algorithm is proposed in Adam: A Method for Stochastic Optimization.

For more details, please refer to mindspore.nn.Adam.

The updating formulas are as follows,

m=β1m+(1β1)gv=β2v+(1β2)ggl=α1β2t1β1tw=wlmv+ϵ

m represents the 1st moment vector, v represents the 2nd moment vector, g represents gradient, l represents scaling factor lr, β1,β2 represent beta1 and beta2, t represents updating step while beta1t(β1t) and beta2t(β2t) represent beta1_power and beta2_power, α represents learning_rate, w represents var, ϵ represents epsilon.

Parameters
  • use_locking (bool) – Whether to enable a lock to protect variable tensors from being updated. If true, updates of the var, m, and v tensors will be protected by a lock. If false, the result is unpredictable. Default: False.

  • use_nesterov (bool) – Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients. If true, update the gradients using NAG. If false, update the gradients without using NAG. Default: False.

Inputs:
  • var (Tensor) - Weights to be updated. The shape is (N,) where means, any number of additional dimensions. The data type can be float16 or float32.

  • m (Tensor) - The 1st moment vector in the updating formula, the shape and data type value should be the same as var.

  • v (Tensor) - the 2nd moment vector in the updating formula, the shape and data type value should be the same as var. Mean square gradients with the same type as var.

  • beta1_power (float) - beta1t(β1t) in the updating formula, the data type value should be the same as var.

  • beta2_power (float) - beta2t(β2t) in the updating formula, the data type value should be the same as var.

  • lr (float) - l in the updating formula. The paper suggested value is 108, the data type value should be the same as var.

  • beta1 (float) - The exponential decay rate for the 1st moment estimations, the data type value should be the same as var. The paper suggested value is 0.9

  • beta2 (float) - The exponential decay rate for the 2nd moment estimations, the data type value should be the same as var. The paper suggested value is 0.999

  • epsilon (float) - Term added to the denominator to improve numerical stability.

  • gradient (Tensor) - Gradient, has the same shape and data type as var.

Outputs:

Tuple of 3 Tensor, the updated parameters.

  • var (Tensor) - The same shape and data type as Inputs var.

  • m (Tensor) - The same shape and data type as Inputs m.

  • v (Tensor) - The same shape and data type as Inputs v.

Raises
  • TypeError – If neither use_locking nor use_nesterov is a bool.

  • TypeError – If var, m or v is not a Tensor.

  • TypeError – If beta1_power, beta2_power1, lr, beta1, beta2, epsilon or gradient is not a Tensor.

Supported Platforms:

Ascend GPU CPU

Examples

>>> class Net(nn.Cell):
...     def __init__(self):
...         super(Net, self).__init__()
...         self.apply_adam = ops.Adam()
...         self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var")
...         self.m = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="m")
...         self.v = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="v")
...     def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad):
...         out = self.apply_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2,
...                               epsilon, grad)
...         return out
...
>>> net = Net()
>>> gradient = Tensor(np.ones([2, 2]).astype(np.float32))
>>> output = net(0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient)
>>> print(net.var.asnumpy())
[[0.9996838 0.9996838]
 [0.9996838 0.9996838]]