文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.Conv2dBnFoldQuantOneConv

class mindspore.nn.Conv2dBnFoldQuantOneConv(in_channels, out_channels, kernel_size, stride=1, pad_mode='same', padding=0, dilation=1, group=1, eps=1e-05, momentum=0.997, has_bias=False, weight_init='normal', bias_init='zeros', beta_init='zeros', gamma_init='ones', mean_init='zeros', var_init='ones', fake=True, quant_config=quant_config_default, quant_dtype=QuantDtype.INT8)[source]

2D convolution which use the convolution layer statistics once to calculate Batch Normalization operation folded construct.

This part is a more detailed overview of Conv2d operation. For more details about Quantization, please refer to the implementation of class of FakeQuantWithMinMaxObserver, FakeQuantWithMinMaxObserver.

wq=quant(wvarG+ϵγ)b=μGvarG+ϵγ+βy=wq×x+b

where quant is the continuous execution of quant and dequant, you can refer to the implementation of subclass of FakeQuantWithMinMaxObserver, mindspore.nn.FakeQuantWithMinMaxObserver. mu _{G} and var_{G} represent the global mean and variance respectively.

Parameters
  • in_channels (int) – The number of input channel Cin.

  • out_channels (int) – The number of output channel Cout.

  • kernel_size (Union[int, tuple[int]]) – Specifies the height and width of the 2D convolution window.

  • stride (Union[int, tuple[int]]) – Specifies stride for all spatial dimensions with the same value. Default: 1.

  • pad_mode (str) – Specifies padding mode. The optional values are “same”, “valid”, “pad”. Default: “same”.

  • padding (Union[int, tuple[int]]) – Implicit paddings on both sides of the x. Default: 0.

  • dilation (Union[int, tuple[int]]) – Specifies the dilation rate to use for dilated convolution. Default: 1.

  • group (int) – Splits filter into groups, in_ channels and out_channels must be divisible by the number of groups. Default: 1.

  • eps (float) – Parameters for Batch Normalization. Default: 1e-5.

  • momentum (float) – Parameters for Batch Normalization op. Default: 0.997.

  • has_bias (bool) – Specifies whether the layer uses a bias vector, which is temporarily invalid. Default: False.

  • weight_init (Union[Tensor, str, Initializer, numbers.Number]) – Initializer for the convolution kernel. Default: ‘normal’.

  • bias_init (Union[Tensor, str, Initializer, numbers.Number]) – Initializer for the bias vector. Default: ‘zeros’.

  • beta_init (Union[Tensor, str, Initializer, numbers.Number]) – Initializer for the beta vector. Default: ‘zeros’.

  • gamma_init (Union[Tensor, str, Initializer, numbers.Number]) – Initializer for the gamma vector. Default: ‘ones’.

  • mean_init (Union[Tensor, str, Initializer, numbers.Number]) – Initializer for the mean vector. Default: ‘zeros’.

  • var_init (Union[Tensor, str, Initializer, numbers.Number]) – Initializer for the variance vector. Default: ‘ones’.

  • fake (bool) – Whether Conv2dBnFoldQuant Cell adds FakeQuantWithMinMaxObserver. Default: True.

  • quant_config (QuantConfig) – Configures the types of quant observer and quant settings of weight and activation. Note that, QuantConfig is a special namedtuple, which is designed for quantization and can be generated by mindspore.compression.quant.create_quant_config() method. Default: QuantConfig with both items set to default FakeQuantWithMinMaxObserver.

  • quant_dtype (QuantDtype) – Specifies the FakeQuant datatype. Default: QuantDtype.INT8.

Inputs:
  • x (Tensor) - Tensor of shape (N,Cin,Hin,Win).

Outputs:

Tensor of shape (N,Cout,Hout,Wout).

Raises
  • TypeError – If in_channels, out_channels or group is not an int.

  • TypeError – If kernel_size, stride, padding or dilation is neither an int nor a tuple.

  • TypeError – If has_bias or fake is not a bool.

  • TypeError – If data_format is not a string.

  • ValueError – If in_channels, out_channels, kernel_size, stride or dilation is less than 1.

  • ValueError – If padding is less than 0.

  • ValueError – If pad_mode is not one of ‘same’, ‘valid’, ‘pad’.

Supported Platforms:

Ascend GPU

Examples

>>> import mindspore
>>> from mindspore.compression import quant
>>> from mindspore import Tensor
>>> qconfig = quant.create_quant_config()
>>> conv2d_bnfold = nn.Conv2dBnFoldQuantOneConv(1, 1, kernel_size=(2, 2), stride=(1, 1), pad_mode="valid",
...                                             weight_init="ones", quant_config=qconfig)
>>> x = Tensor(np.array([[[[1, 0, 3], [1, 4, 7], [2, 5, 2]]]]), mindspore.float32)
>>> result = conv2d_bnfold(x)
>>> print(result)
[[[[5.9296875 13.8359375]
   [11.859375 17.78125]]]]
extend_repr()[source]

Display instance object as string.