文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.Conv2dBnAct

class mindspore.nn.Conv2dBnAct(in_channels, out_channels, kernel_size, stride=1, pad_mode='same', padding=0, dilation=1, group=1, has_bias=False, weight_init='normal', bias_init='zeros', has_bn=False, momentum=0.997, eps=1e-05, activation=None, alpha=0.2, after_fake=True)[source]

A combination of convolution, Batchnorm, and activation layer.

This part is a more detailed overview of Conv2d operation.

Parameters
  • in_channels (int) – The number of input channel Cin.

  • out_channels (int) – The number of output channel Cout.

  • kernel_size (Union[int, tuple]) – The data type is int or a tuple of 2 integers. Specifies the height and width of the 2D convolution window. Single int means the value is for both height and width of the kernel. A tuple of 2 ints means the first value is for the height and the other is for the width of the kernel.

  • stride (int) – Specifies stride for all spatial dimensions with the same value. The value of stride must be greater than or equal to 1 and lower than any one of the height and width of the x. Default: 1.

  • pad_mode (str) – Specifies padding mode. The optional values are “same”, “valid”, “pad”. Default: “same”.

  • padding (int) – Implicit paddings on both sides of the x. Default: 0.

  • dilation (int) – Specifies the dilation rate to use for dilated convolution. If set to be k>1, there will be k1 pixels skipped for each sampling location. Its value must be greater than or equal to 1 and lower than any one of the height and width of the x. Default: 1.

  • group (int) – Splits filter into groups, in_ channels and out_channels must be divisible by the number of groups. Default: 1.

  • has_bias (bool) – Specifies whether the layer uses a bias vector. Default: False.

  • weight_init (Union[Tensor, str, Initializer, numbers.Number]) – Initializer for the convolution kernel. It can be a Tensor, a string, an Initializer or a number. When a string is specified, values from ‘TruncatedNormal’, ‘Normal’, ‘Uniform’, ‘HeUniform’ and ‘XavierUniform’ distributions as well as constant ‘One’ and ‘Zero’ distributions are possible. Alias ‘xavier_uniform’, ‘he_uniform’, ‘ones’ and ‘zeros’ are acceptable. Uppercase and lowercase are both acceptable. Refer to the values of Initializer for more details. Default: ‘normal’.

  • bias_init (Union[Tensor, str, Initializer, numbers.Number]) – Initializer for the bias vector. Possible Initializer and string are the same as ‘weight_init’. Refer to the values of Initializer for more details. Default: ‘zeros’.

  • has_bn (bool) – Specifies to used batchnorm or not. Default: False.

  • momentum (float) – Momentum for moving average for batchnorm, must be [0, 1]. Default:0.997

  • eps (float) – Term added to the denominator to improve numerical stability for batchnorm, should be greater than 0. Default: 1e-5.

  • activation (Union[str, Cell, Primitive]) – Specifies activation type. The optional values are as following: ‘softmax’, ‘logsoftmax’, ‘relu’, ‘relu6’, ‘tanh’, ‘gelu’, ‘sigmoid’, ‘prelu’, ‘leakyrelu’, ‘hswish’, ‘hsigmoid’. Default: None.

  • alpha (float) – Slope of the activation function at x < 0 for LeakyReLU. Default: 0.2.

  • after_fake (bool) – Determine whether there must be a fake quantization operation after Cond2dBnAct. Default: True.

Inputs:
  • x (Tensor) - Tensor of shape (N,Cin,Hin,Win). The data type is float32.

Outputs:

Tensor of shape (N,Cout,Hout,Wout). The data type is float32.

Raises
  • TypeError – If in_channels, out_channels, stride, padding or dilation is not an int.

  • TypeError – If has_bias is not a bool.

  • ValueError – If in_channels or out_channels stride, padding or dilation is less than 1.

  • ValueError – If pad_mode is not one of ‘same’, ‘valid’, ‘pad’.

Supported Platforms:

Ascend GPU CPU

Examples

>>> net = nn.Conv2dBnAct(120, 240, 4, has_bn=True, activation='relu')
>>> x = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
>>> result = net(x)
>>> output = result.shape
>>> print(output)
(1, 240, 1024, 640)