文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.tensor_dot

mindspore.ops.tensor_dot(x1, x2, axes)[source]

Computation of Tensor contraction on arbitrary axes between tensors a and b.

Contraction allows for the summation of products of elements of a and b on specified axes. The same number of axes must be specified for both x1 and x2, and values must be within range of number of dims of both a and b.

Selected dims in both inputs must also match.

axes = 0 leads to outer product axes = 1 leads to normal matrix multiplication when inputs both 2D. axes = 1 is the same as axes = ((1,),(0,) where both a and b are 2D. axes = 2 is the same as axes = ((1,2),(0,1)) where both a and b are 3D.

Inputs:
  • x1 (Tensor) - First tensor in tensor_dot with datatype float16 or float32

  • x2 (Tensor) - Second tensor in tensor_dot with datatype float16 or float32

  • axes (Union[int, tuple(int), tuple(tuple(int)), list(list(int))]) - Single value or tuple/list of length 2 with dimensions specified for a and b each. If single value N passed, automatically picks up last N dims from a input shape and first N dims from b input shape in order as axes for each respectively.

Outputs:

Tensor, the shape of the output tensor is (N+M). Where N and M are the free axes not contracted in both inputs

Raises
  • TypeError – If x1 or x2 is not a Tensor.

  • TypeError – If axes is not one of the following: int, tuple, list.

Supported Platforms:

Ascend GPU CPU

Examples

>>> input_x1 = Tensor(np.ones(shape=[1, 2, 3]), mindspore.float32)
>>> input_x2 = Tensor(np.ones(shape=[3, 1, 2]), mindspore.float32)
>>> output = ops.tensor_dot(input_x1, input_x2, ((0,1),(1,2)))
>>> print(output)
[[2. 2. 2]
 [2. 2. 2]
 [2. 2. 2]]