文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.poisson

mindspore.ops.poisson(shape, mean, seed=None)[source]

Generates random numbers according to the Poisson random number distribution.

P(i|μ)=exp(μ)μii!
Parameters
  • shape (tuple) – The shape of random tensor to be generated. The format is (N,) where means, any number of additional dimensions.

  • mean (Tensor) – The mean μ distribution parameter. It should be greater than 0 with float32 data type.

  • seed (int) – Seed is used as entropy source for the random number engines to generate pseudo-random numbers and must be non-negative. Default: None, which will be treated as 0.

Returns

Tensor. The shape should be equal to the broadcasted shape between the input “shape” and shapes of mean. The dtype is float32.

Raises
  • TypeError – If shape is not a tuple.

  • TypeError – If mean is not a Tensor whose dtype is not float32.

  • TypeError – If seed is not an int.

Supported Platforms:

Ascend

Examples

>>> # case 1: It can be broadcast.
>>> shape = (4, 1)
>>> mean = Tensor(np.array([5.0, 10.0]), mindspore.float32)
>>> output = ops.poisson(shape, mean, seed=5)
>>> result = output.shape
>>> print(result)
(4, 2)
>>> # case 2: It can not be broadcast. It is recommended to use the same shape.
>>> shape = (2, 2)
>>> mean = Tensor(np.array([[5.0, 10.0], [5.0, 1.0]]), mindspore.float32)
>>> output = ops.poisson(shape, mean, seed=5)
>>> result = output.shape
>>> print(result)
(2, 2)