文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.KLDivLoss

class mindspore.ops.KLDivLoss(reduction='mean')[source]

Computes the Kullback-Leibler divergence between the logits and the labels.

The updating formulas of KLDivLoss algorithm are as follows,

L={l1,,lN},ln=yn(logynxn)

Then,

(x,y)={L,if reduction='none';mean(L),if reduction='mean';sum(L),if reduction='sum'.

where x represents logits. y represents labels. (x,y) represents output.

Parameters

reduction (str) – Specifies the reduction to be applied to the output. Its value must be one of ‘none’, ‘mean’, ‘sum’. Default: ‘mean’.

Inputs:
  • logits (Tensor) - The input Tensor. The data type must be float32.

  • labels (Tensor) - The label Tensor which has the same shape and data type as logits.

Outputs:

Tensor or Scalar, if reduction is ‘none’, then output is a tensor and has the same shape as logits. Otherwise it is a scalar.

Raises
  • TypeError – If reduction is not a str.

  • TypeError – If neither logits nor labels is a Tensor.

  • TypeError – If dtype of logits or labels is not float32.

Supported Platforms:

GPU

Examples

>>> class Net(nn.Cell):
...     def __init__(self):
...         super(Net, self).__init__()
...         self.kldiv_loss = ops.KLDivLoss()
...     def construct(self, logits, labels):
...         result = self.kldiv_loss(logits, labels)
...         return result
...
>>> net = Net()
>>> logits = Tensor(np.array([0.2, 0.7, 0.1]), mindspore.float32)
>>> labels = Tensor(np.array([0., 1., 0.]), mindspore.float32)
>>> output = net(logits, labels)
>>> print(output)
-0.23333333