文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.SoftmaxCrossEntropyWithLogits

class mindspore.nn.SoftmaxCrossEntropyWithLogits(sparse=False, reduction='none')[source]

Computes softmax cross entropy between logits and labels.

Measures the distribution error between the probabilities of the input (computed with softmax function) and the labels where the classes are mutually exclusive (only one class is positive) using cross entropy loss.

Typical input into this function is unnormalized scores denoted as x whose shape is (N, C), and the corresponding targets.

For each instance xi, i ranges from 0 to N-1, the loss is given as:

(xi,c)=log(exp(xi[c])jexp(xi[j]))=xi[c]+log(jexp(xi[j]))

where xi is a 1D score Tensor, c is the index of 1 in one-hot.

Note

While the labels classes are mutually exclusive, i.e., only one class is positive in the labels, the predicted probabilities does not need to be exclusive. It is only required that the predicted probability distribution of entry is a valid one.

Parameters
  • sparse (bool) – Specifies whether labels use sparse format or not. Default: False.

  • reduction (str) – Type of reduction to be applied to loss. The optional values are “mean”, “sum”, and “none”. If “none”, do not perform reduction. Default: “none”.

Inputs:
  • logits (Tensor) - Tensor of shape (N, C). Data type must be float16 or float32.

  • labels (Tensor) - Tensor of shape (N, ). If sparse is True, The type of labels is int32 or int64. Otherwise, the type of labels is the same as the type of logits.

Outputs:

Tensor, a tensor of the same shape and type as logits with the component-wise logistic losses.

Raises
  • TypeError – If sparse is not a bool.

  • TypeError – If sparse is True and dtype of labels is neither int32 not int64.

  • TypeError – If sparse is False and dtype of labels is neither float16 not float32.

  • ValueError – If reduction is not one of ‘none’, ‘mean’, ‘sum’.

Supported Platforms:

Ascend GPU CPU

Examples

>>> # case 1: sparse=True
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
>>> logits = Tensor(np.array([[3, 5, 6, 9, 12, 33, 42, 12, 32, 72]]), mindspore.float32)
>>> labels_np = np.array([1]).astype(np.int32)
>>> labels = Tensor(labels_np)
>>> output = loss(logits, labels)
>>> print(output)
[67.]
>>> # case 2: sparse=False
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=False)
>>> logits = Tensor(np.array([[3, 5, 6, 9, 12, 33, 42, 12, 32, 72]]), mindspore.float32)
>>> labels_np = np.array([[0, 0, 0, 0, 0, 0, 1, 0, 0, 0]]).astype(np.float32)
>>> labels = Tensor(labels_np)
>>> output = loss(logits, labels)
>>> print(output)
[30.]