文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.SoftMarginLoss

class mindspore.nn.SoftMarginLoss(reduction='mean')[source]

A loss class for two-class classification problems.

SoftMarginLoss creates a criterion that optimizes a two-class classification logistic loss between input tensor x and labels tensor y (containing 1 or -1).

loss(x,y)=ilog(1+exp(y[i]x[i]))x.nelement()
Parameters

reduction (str) – Apply specific reduction method to the output: ‘none’, ‘mean’, ‘sum’. Default: “mean”.

Inputs:
  • logits (Tensor) - Predict data. Data type must be float16 or float32.

  • labels (Tensor) - Ground truth data, with the same type and shape as logits.

Outputs:

Tensor or Scalar, if reduction is “none”, its shape is the same as logits. Otherwise, a scalar value will be returned.

Raises
  • TypeError – If logits or labels is not a Tensor.

  • TypeError – If dtype of logits or labels is neither float16 nor float32.

  • ValueError – If shape of logits is not the same as labels.

  • ValueError – If reduction is not one of ‘none’, ‘mean’, ‘sum’.

Supported Platforms:

Ascend

Examples

>>> loss = ops.SoftMarginLoss()
>>> logits = Tensor(np.array([[0.3, 0.7], [0.5, 0.5]]), mindspore.float32)
>>> labels = Tensor(np.array([[-1, 1], [1, -1]]), mindspore.float32)
>>> output = loss(logits, labels)
>>> print(output)
0.6764238