mindspore.ops.UnsortedSegmentProd

class mindspore.ops.UnsortedSegmentProd[source]

Computes the product of a tensor along segments.

The following figure shows the calculation process of UnsortedSegmentProd:

../../_images/UnsortedSegmentProd.png
Inputs:
  • input_x (Tensor) - The shape is \((x_1, x_2, ..., x_R)\). With float16, float32 or int32 data type.

  • segment_ids (Tensor) - A 1-D tensor whose shape is \((x_1)\), the value must be non-negative tensor. Data type must be int32.

  • num_segments (int) - The value specifies the number of distinct segment_ids, must be greater than 0.

Outputs:

Tensor, set the number of num_segments as N, the shape is \((N, x_2, ..., x_R)\).

Raises
  • TypeError – If num_segments is not an int.

  • ValueError – If length of shape of segment_ids is not equal to 1.

Supported Platforms:

Ascend

Examples

>>> input_x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32))
>>> segment_ids = Tensor(np.array([0, 1, 0]).astype(np.int32))
>>> num_segments = 2
>>> unsorted_segment_prod = ops.UnsortedSegmentProd()
>>> output = unsorted_segment_prod(input_x, segment_ids, num_segments)
>>> print(output)
[[4. 4. 3.]
 [4. 5. 6.]]