mindspore.nn.CELU
- class mindspore.nn.CELU(alpha=1.0)[source]
Continuously differentiable exponential linear units activation function.
Applies the continuously differentiable exponential linear units function element-wise.
\[\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))\]It returns element-wise \(\max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))\).
The picture about CELU looks like this CELU.
- Parameters
alpha (float) – The \(\alpha\) value for the Celu formulation. Default: 1.0
- Inputs:
x (Tensor) - The input of CELU. The required dtype is float16 or float32. The shape is \((N,*)\) where \(*\) means, any number of additional dimensions.
- Outputs:
Tensor, with the same type and shape as the x.
- Raises
TypeError – If alpha is not a float.
ValueError – If alpha has the value of 0.
TypeError – If x is not a Tensor.
TypeError – If the dtype of ‘input_x’ is neither float16 nor float32.
- Supported Platforms:
Ascend
Examples
>>> x = Tensor(np.array([-2.0, -1.0, 1.0, 2.0]), mindspore.float32) >>> celu = nn.CELU() >>> output = celu(x) >>> print(output) [-0.86466473 -0.63212055 1. 2. ]