运行方式

image0image1image2

概述

执行主要有三种方式:单算子、普通函数和网络训练模型。

本文示例适用于GPU和Ascend环境。

执行单算子

执行单个算子,并打印相关结果。

代码样例如下:

[1]:
import numpy as np
import mindspore.nn as nn
from mindspore import context, Tensor

context.set_context(mode=context.GRAPH_MODE, device_target="GPU")

conv = nn.Conv2d(3, 4, 3, bias_init='zeros')
input_data = Tensor(np.ones([1, 3, 5, 5]).astype(np.float32))
output = conv(input_data)
print(output.asnumpy())
[[[[ 0.01647821  0.05310077  0.05310077  0.05310077  0.05118286]
   [ 0.03007141  0.0657572   0.0657572   0.0657572   0.04350833]
   [ 0.03007141  0.0657572   0.0657572   0.0657572   0.04350833]
   [ 0.03007141  0.0657572   0.0657572   0.0657572   0.04350833]
   [ 0.01847598  0.04713529  0.04713529  0.04713529  0.03720935]]

  [[-0.03362034 -0.06124294 -0.06124294 -0.06124294 -0.04334928]
   [-0.02676596 -0.08040315 -0.08040315 -0.08040315 -0.06846539]
   [-0.02676596 -0.08040315 -0.08040315 -0.08040315 -0.06846539]
   [-0.02676596 -0.08040315 -0.08040315 -0.08040315 -0.06846539]
   [-0.00557975 -0.06808633 -0.06808633 -0.06808633 -0.08389233]]

  [[-0.01602227  0.02266152  0.02266152  0.02266152  0.06030601]
   [-0.06764769 -0.02966945 -0.02966945 -0.02966945  0.04861854]
   [-0.06764769 -0.02966945 -0.02966945 -0.02966945  0.04861854]
   [-0.06764769 -0.02966945 -0.02966945 -0.02966945  0.04861854]
   [-0.06528193 -0.03500666 -0.03500666 -0.03500666  0.02858584]]

  [[-0.03102187 -0.03846825 -0.03846825 -0.03846825 -0.00858424]
   [-0.04270145 -0.070785   -0.070785   -0.070785   -0.05362675]
   [-0.04270145 -0.070785   -0.070785   -0.070785   -0.05362675]
   [-0.04270145 -0.070785   -0.070785   -0.070785   -0.05362675]
   [-0.01230605 -0.04999261 -0.04999261 -0.04999261 -0.04718029]]]]

由于weight初始化存在随机因素,实际输出结果可能不同,仅供参考。

执行普通函数

将若干算子组合成一个函数,然后直接通过函数调用的方式执行这些算子,并打印相关结果,如下例所示。

代码样例如下:

[2]:
import numpy as np
from mindspore import context, Tensor
import mindspore.ops as ops

context.set_context(mode=context.GRAPH_MODE, device_target="GPU")

def add_func(x, y):
    z = ops.add(x, y)
    z = ops.add(z, x)
    return z

x = Tensor(np.ones([3, 3], dtype=np.float32))
y = Tensor(np.ones([3, 3], dtype=np.float32))
output = add_func(x, y)
print(output.asnumpy())
[[3. 3. 3.]
 [3. 3. 3.]
 [3. 3. 3.]]

执行网络模型

MindSpore的Model接口是用于训练和验证的高级接口。可以将有训练或推理功能的layers组合成一个对象,通过调用trainevalpredict接口可以分别实现训练、推理和预测功能。

用户可以根据实际需要传入网络、损失函数和优化器等初始化Model接口,还可以通过配置amp_level实现混合精度,配置metrics实现模型评估。

执行网络模型会在执行目录下生成kernel_meta目录,并在执行过程中保存网络编译生成的算子缓存文件到此目录,包括.o.info.json文件。若用户再次执行相同的网络模型,或者仅有部分变化,MindSpore会自动调用kernel_meta目录下可复用的算子缓存文件,显著减少网络编译时间,提升执行性能。详细内容请参考算子增量编译

在执行网络之前,先将所需要的数据集下载并解压缩到指定位置:

[3]:
!mkdir -p ./datasets/MNIST_Data/train ./datasets/MNIST_Data/test
!wget -NP ./datasets/MNIST_Data/train https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/mnist/train-labels-idx1-ubyte
!wget -NP ./datasets/MNIST_Data/train https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/mnist/train-images-idx3-ubyte
!wget -NP ./datasets/MNIST_Data/test https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/mnist/t10k-labels-idx1-ubyte
!wget -NP ./datasets/MNIST_Data/test https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/mnist/t10k-images-idx3-ubyte
!tree ./datasets/MNIST_Data
./datasets/MNIST_Data
├── test
│   ├── t10k-images-idx3-ubyte
│   └── t10k-labels-idx1-ubyte
└── train
    ├── train-images-idx3-ubyte
    └── train-labels-idx1-ubyte

2 directories, 4 files

执行训练模型

通过调用Model的train接口可以实现训练。

代码样例如下:

[4]:
import os
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as CT
import mindspore.nn as nn
from mindspore import context, Model
from mindspore import dtype as mstype
from mindspore.common.initializer import Normal
from mindspore.train.callback import LossMonitor, ModelCheckpoint, CheckpointConfig


def create_dataset(data_path, batch_size=32, repeat_size=1,
                   num_parallel_workers=1):
    """
    create dataset for train or test
    """
    # define dataset
    mnist_ds = ds.MnistDataset(data_path)

    resize_height, resize_width = 32, 32
    rescale = 1.0 / 255.0
    shift = 0.0
    rescale_nml = 1 / 0.3081
    shift_nml = -1 * 0.1307 / 0.3081

    # define map operations
    resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)  # Bilinear mode
    rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
    rescale_op = CV.Rescale(rescale, shift)
    hwc2chw_op = CV.HWC2CHW()
    type_cast_op = CT.TypeCast(mstype.int32)

    # apply map operations on images
    mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)

    # apply DatasetOps
    buffer_size = 10000
    mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)  # 10000 as in LeNet train script
    mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
    mnist_ds = mnist_ds.repeat(repeat_size)

    return mnist_ds


class LeNet5(nn.Cell):
    """
    Lenet network

    Args:
        num_class (int): Num classes. Default: 10.
        num_channel (int): Num channels. Default: 1.

    Returns:
        Tensor, output tensor
    Examples:
        >>> LeNet(num_class=10)

    """

    def __init__(self, num_class=10, num_channel=1):
        super(LeNet5, self).__init__()
        self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
        self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
        self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
        self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
        self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
        self.relu = nn.ReLU()
        self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
        self.flatten = nn.Flatten()

    def construct(self, x):
        x = self.max_pool2d(self.relu(self.conv1(x)))
        x = self.max_pool2d(self.relu(self.conv2(x)))
        x = self.flatten(x)
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return x


if __name__ == "__main__":
    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")

    model_path = "./models/ckpt/mindspore_run/"
    os.system("rm -rf {0}*.ckpt {0}*.meta {0}*.pb".format(model_path))

    ds_train_path = "./datasets/MNIST_Data/train/"
    ds_train = create_dataset(ds_train_path, 32)

    network = LeNet5(10)
    net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
    net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
    config_ck = CheckpointConfig(save_checkpoint_steps=1875, keep_checkpoint_max=5)
    ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", directory=model_path, config=config_ck)
    model = Model(network, net_loss, net_opt)

    print("============== Starting Training ==============")
    model.train(1, ds_train, callbacks=[LossMonitor(375), ckpoint_cb], dataset_sink_mode=True)
============== Starting Training ==============
epoch: 1 step: 375, loss is 2.2898183
epoch: 1 step: 750, loss is 2.2777305
epoch: 1 step: 1125, loss is 0.27802905
epoch: 1 step: 1500, loss is 0.032973606
epoch: 1 step: 1875, loss is 0.06105463

示例中用到的MNIST数据集的获取方法,可以参照实现一个图片分类应用的下载数据集部分,下同。

使用PyNative模式调试, 请参考使用PyNative模式调试, 包括单算子、普通函数和网络训练模型的执行。

使用自由控制循环的迭代次数、遍历数据集等,可以参照官网编程指南《训练》的自定义循环训练部分。

执行推理模型

通过调用Model的eval接口可以实现推理。为了方便评估模型的好坏,可以在Model接口初始化的时候设置评估指标Metric。

Metric是用于评估模型好坏的指标。常见的主要有Accuracy、Fbeta、Precision、Recall和TopKCategoricalAccuracy等,通常情况下,一种模型指标无法全面的评估模型的好坏,一般会结合多个指标共同作用对模型进行评估。

常用的内置评估指标:

  • Accuracy(准确率):是一个用于评估分类模型的指标。通俗来说,准确率是指我们的模型预测正确的结果所占的比例。 公式:

    \[Accuracy = (TP+TN)/(TP+TN+FP+FN)\]
  • Precision(精确率):在被识别为正类别的样本中,确实为正类别的比例。公式:

    \[Precision = TP/(TP+FP)\]
  • Recall(召回率):在所有正类别样本中,被正确识别为正类别的比例。 公式:

    \[Recall = TP/(TP+FN)\]
  • Fbeta(调和均值):综合考虑precision和recall的调和均值。 公式:

    \[F_\beta = (1 + \beta^2) \cdot \frac{precisiont \cdot recall}{(\beta^2 \cdot precision) + recall}\]
  • TopKCategoricalAccuracy(多分类TopK准确率):计算TopK分类准确率。

代码样例如下:

[5]:
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as CT
import mindspore.dataset.vision.c_transforms as CV
import mindspore.nn as nn
from mindspore import context, Model, load_checkpoint, load_param_into_net
from mindspore import dtype as mstype
from mindspore.common.initializer import Normal
from mindspore.dataset.vision import Inter
from mindspore.nn import Accuracy, Precision


class LeNet5(nn.Cell):
    """
    Lenet network

    Args:
        num_class (int): Num classes. Default: 10.
        num_channel (int): Num channels. Default: 1.

    Returns:
        Tensor, output tensor
    Examples:
        >>> LeNet(num_class=10)

    """

    def __init__(self, num_class=10, num_channel=1):
        super(LeNet5, self).__init__()
        self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
        self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
        self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
        self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
        self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
        self.relu = nn.ReLU()
        self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
        self.flatten = nn.Flatten()

    def construct(self, x):
        x = self.max_pool2d(self.relu(self.conv1(x)))
        x = self.max_pool2d(self.relu(self.conv2(x)))
        x = self.flatten(x)
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return x


def create_dataset(data_path, batch_size=32, repeat_size=1,
                   num_parallel_workers=1):
    """
    create dataset for train or test
    """
    # define dataset
    mnist_ds = ds.MnistDataset(data_path)

    resize_height, resize_width = 32, 32
    rescale = 1.0 / 255.0
    shift = 0.0
    rescale_nml = 1 / 0.3081
    shift_nml = -1 * 0.1307 / 0.3081

    # define map operations
    resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)  # Bilinear mode
    rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
    rescale_op = CV.Rescale(rescale, shift)
    hwc2chw_op = CV.HWC2CHW()
    type_cast_op = CT.TypeCast(mstype.int32)

    # apply map operations on images
    mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers)
    mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)

    # apply DatasetOps
    buffer_size = 10000
    mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)  # 10000 as in LeNet train script
    mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
    mnist_ds = mnist_ds.repeat(repeat_size)

    return mnist_ds


if __name__ == "__main__":
    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")

    model_path = "./models/ckpt/mindspore_run/"
    ds_eval_path = "./datasets/MNIST_Data/test/"
    network = LeNet5(10)
    net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
    repeat_size = 1
    net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
    model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy(), "Precision": Precision()})

    print("============== Starting Testing ==============")
    param_dict = load_checkpoint(model_path+"checkpoint_lenet-1_1875.ckpt")
    load_param_into_net(network, param_dict)
    ds_eval = create_dataset(ds_eval_path, 32, repeat_size)

    acc = model.eval(ds_eval, dataset_sink_mode=True)
    print("============== {} ==============".format(acc))
============== Starting Testing ==============
============== {'Accuracy': 0.960136217948718, 'Precision': array([0.95763547, 0.98059965, 0.99153439, 0.93333333, 0.97322348,
       0.99385749, 0.98502674, 0.93179724, 0.8974359 , 0.97148676])} ==============

其中:

  • load_checkpoint:通过该接口加载CheckPoint模型参数文件,返回一个参数字典。

  • checkpoint_lenet-1_1875.ckpt:保存的CheckPoint模型文件名称。

  • load_param_into_net:通过该接口把参数加载到网络中。

checkpoint_lenet-1_1875.ckpt文件的保存方法,可以参考实现一个图片分类应用的训练网络部分。