mindspore.nn.WithLossCell
- class mindspore.nn.WithLossCell(backbone, loss_fn)[source]
Cell with loss function.
Wraps the network with loss function. This Cell accepts data and label as inputs and the computed loss will be returned.
- Parameters
- Inputs:
data (Tensor) - Tensor of shape \((N, \ldots)\).
label (Tensor) - Tensor of shape \((N, \ldots)\).
- Outputs:
Tensor, a scalar tensor with shape \(()\).
- Raises
TypeError – If dtype of data or label is neither float16 nor float32.
- Supported Platforms:
Ascend
GPU
Examples
>>> net = Net() >>> loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False) >>> net_with_criterion = nn.WithLossCell(net, loss_fn) >>> >>> batch_size = 2 >>> data = Tensor(np.ones([batch_size, 1, 32, 32]).astype(np.float32) * 0.01) >>> label = Tensor(np.ones([batch_size, 10]).astype(np.float32)) >>> >>> output_data = net_with_criterion(data, label)
- property backbone_network
Returns the backbone network.
- Returns
Cell, the backbone network.