mindspore.nn.TensorAddQuant
- class mindspore.nn.TensorAddQuant(ema_decay=0.999, quant_config=quant_config_default, quant_dtype=QuantDtype.INT8)[source]
Adds fake quantized operation after TensorAdd operation.
This part is a more detailed overview of TensorAdd operation. For more detials about Quantilization, please refer to
mindspore.nn.FakeQuantWithMinMaxObserver
.- Parameters
ema_decay (float) – Exponential Moving Average algorithm parameter. Default: 0.999.
quant_config (QuantConfig) – Configures the oberser types and quant settings of weight and activation. Can be generated by compression.quant.create_quant_config method. Default: both set to default FakeQuantWithMinMaxObserver.
quant_dtype (QuantDtype) – Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
- Inputs:
input_x1 (Tensor) - The first tensor of TensorAddQuant.
input_x2 (Tensor) - The second tensor of TensorAddQuant.
- Outputs:
Tensor, with the same type and shape as the input_x1.
- Raises
TypeError – If ema_decay is not a float.
- Supported Platforms:
Ascend
GPU
Examples
>>> qconfig = compression.quant.create_quant_config() >>> add_quant = nn.TensorAddQuant(quant_config=qconfig) >>> input_x1 = Tensor(np.array([[1, 2, 1], [-2, 0, -1]]), mindspore.float32) >>> input_x2 = Tensor(np.ones((2, 3)), mindspore.float32) >>> output = add_quant(input_x1, input_x2) >>> print(output) [[ 1.9764705 3.011765 1.9764705] [-0.9882355 0.9882355 0. ]]