mindspore.nn.DenseQuant
- class mindspore.nn.DenseQuant(in_channels, out_channels, weight_init='normal', bias_init='zeros', has_bias=True, activation=None, quant_config=quant_config_default, quant_dtype=QuantDtype.INT8)[source]
The fully connected layer with fake quantized operation.
This part is a more detailed overview of Dense operation. For more detials about Quantilization, please refer to
mindspore.nn.FakeQuantWithMinMaxObserver
.- Parameters
in_channels (int) – The dimension of the input space.
out_channels (int) – The dimension of the output space.
weight_init (Union[Tensor, str, Initializer, numbers.Number]) – The trainable weight_init parameter. The dtype is same as input. The values of str refer to the function initializer. Default: ‘normal’.
bias_init (Union[Tensor, str, Initializer, numbers.Number]) – The trainable bias_init parameter. The dtype is same as input. The values of str refer to the function initializer. Default: ‘zeros’.
has_bias (bool) – Specifies whether the layer uses a bias vector. Default: True.
activation (Union[str, Cell, Primitive]) – The regularization function applied to the output of the layer, eg. ‘relu’. Default: None.
quant_config (QuantConfig) – Configures the oberser types and quant settings of weight and activation. Can be generated by compression.quant.create_quant_config method. Default: both set to default FakeQuantWithMinMaxObserver.
quant_dtype (QuantDtype) – Specifies the FakeQuant datatype. Default: QuantDtype.INT8.
- Inputs:
input (Tensor) - Tensor of shape \((N, C_{in}, H_{in}, W_{in})\).
- Outputs:
Tensor of shape \((N, C_{out}, H_{out}, W_{out})\).
- Raises
TypeError – If in_channels, out_channels is not an int.
TypeError – If has_bias is not a bool.
ValueError – If in_channels or out_channels is less than 1.
- Supported Platforms:
Ascend
GPU
Examples
>>> qconfig = compression.quant.create_quant_config() >>> dense_quant = nn.DenseQuant(3, 6, quant_config=qconfig) >>> input = Tensor(np.random.randint(-2, 2, (2, 3)), mindspore.float32) >>> result = dense_quant(input) >>> output = result.shape >>> print(output) (2, 6)