mindspore.nn.LogSigmoid

class mindspore.nn.LogSigmoid[source]

Logsigmoid activation function.

Applies logsigmoid activation element-wise. The input is a Tensor with any valid shape.

Logsigmoid is defined as:

\[\text{logsigmoid}(x_{i}) = log(\frac{1}{1 + \exp(-x_i)}),\]

where \(x_{i}\) is the element of the input.

Inputs:
  • input_data (Tensor) - The input of LogSigmoid with data type of float16 or float32.

Outputs:

Tensor, with the same type and shape as the input_data.

Raises

TypeError – If dtype of input_data is neither float16 nor float32.

Supported Platforms:

Ascend GPU

Examples

>>> net = nn.LogSigmoid()
>>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
>>> output = net(input_x)
>>> print(output)
[-0.31326166 -0.12692806 -0.04858734]