mindspore.nn.LogSigmoid
- class mindspore.nn.LogSigmoid[source]
Logsigmoid activation function.
Applies logsigmoid activation element-wise. The input is a Tensor with any valid shape.
Logsigmoid is defined as:
\[\text{logsigmoid}(x_{i}) = log(\frac{1}{1 + \exp(-x_i)}),\]where \(x_{i}\) is the element of the input.
- Inputs:
input_data (Tensor) - The input of LogSigmoid with data type of float16 or float32.
- Outputs:
Tensor, with the same type and shape as the input_data.
- Raises
TypeError – If dtype of input_data is neither float16 nor float32.
- Supported Platforms:
Ascend
GPU
Examples
>>> net = nn.LogSigmoid() >>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) >>> output = net(input_x) >>> print(output) [-0.31326166 -0.12692806 -0.04858734]