# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""conv"""
import numpy as np
from mindspore import log as logger
from mindspore import context
from mindspore.ops import operations as P
from mindspore.ops.primitive import constexpr
from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer, Initializer
from mindspore.common.tensor import Tensor
from mindspore._checkparam import ParamValidator as validator, Rel
from mindspore._checkparam import Validator
from mindspore._checkparam import check_bool, twice, check_int_positive
from mindspore._extends import cell_attr_register
from ..cell import Cell
__all__ = ['Conv2d', 'Conv2dTranspose', 'Conv1d', 'Conv1dTranspose']
class _Conv(Cell):
"""
Applies a N-D convolution over an input signal composed of several input planes.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
pad_mode,
padding,
dilation,
group,
has_bias,
weight_init,
bias_init,
transposed=False):
super(_Conv, self).__init__()
self.in_channels = check_int_positive(in_channels)
self.out_channels = check_int_positive(out_channels)
self.kernel_size = kernel_size
self.stride = stride
self.pad_mode = pad_mode
self.weight_init = weight_init
self.bias_init = bias_init
if isinstance(padding, int):
Validator.check_integer('padding', padding, 0, Rel.GE, self.cls_name)
self.padding = padding
elif isinstance(padding, tuple):
for pad in padding:
Validator.check_integer('padding item', pad, 0, Rel.GE, self.cls_name)
self.padding = padding
else:
raise TypeError("padding type must be int/tuple(int) cannot be {}!".format(type(padding)))
self.dilation = dilation
self.group = check_int_positive(group)
self.has_bias = has_bias
if (not isinstance(kernel_size[0], int)) or (not isinstance(kernel_size[1], int)) or \
isinstance(kernel_size[0], bool) or isinstance(kernel_size[1], bool) or \
kernel_size[0] < 1 or kernel_size[1] < 1:
raise ValueError("Attr 'kernel_size' of 'Conv2D' Op passed "
+ str(self.kernel_size) + ", should be a int or tuple and equal to or greater than 1.")
if (not isinstance(stride[0], int)) or (not isinstance(stride[1], int)) or \
isinstance(stride[0], bool) or isinstance(stride[1], bool) or stride[0] < 1 or stride[1] < 1:
raise ValueError("Attr 'stride' of 'Conv2D' Op passed "
+ str(self.stride) + ", should be a int or tuple and equal to or greater than 1.")
if (not isinstance(dilation[0], int)) or (not isinstance(dilation[1], int)) or \
isinstance(dilation[0], bool) or isinstance(dilation[1], bool) or dilation[0] < 1 or dilation[1] < 1:
raise ValueError("Attr 'dilation' of 'Conv2D' Op passed "
+ str(self.dilation) + ", should be a int or tuple and equal to or greater than 1.")
if in_channels % group != 0:
raise ValueError("Attr 'in_channels' of 'Conv2D' Op must be divisible by "
"attr 'group' of 'Conv2D' Op.")
if out_channels % group != 0:
raise ValueError("Attr 'out_channels' of 'Conv2D' Op must be divisible by "
"attr 'group' of 'Conv2D' Op.")
if transposed:
shape = [in_channels, out_channels // group, *kernel_size]
else:
shape = [out_channels, in_channels // group, *kernel_size]
self.weight = Parameter(initializer(self.weight_init, shape), name='weight')
if check_bool(has_bias):
self.bias = Parameter(initializer(self.bias_init, [out_channels]), name='bias')
else:
if self.bias_init != 'zeros':
logger.warning("Value of 'has_bias' is False, value of 'bias_init' will be ignored.")
self.bias = None
def construct(self, *inputs):
"""Must be overridden by all subclasses."""
raise NotImplementedError
[docs]class Conv2d(_Conv):
r"""
2D convolution layer.
Applies a 2D convolution over an input tensor which is typically of shape :math:`(N, C_{in}, H_{in}, W_{in})`,
where :math:`N` is batch size, :math:`C_{in}` is channel number, and :math:`H_{in}, W_{in})` are height and width.
For each batch of shape :math:`(C_{in}, H_{in}, W_{in})`, the formula is defined as:
.. math::
out_j = \sum_{i=0}^{C_{in} - 1} ccor(W_{ij}, X_i) + b_j,
where :math:`ccor` is the cross-correlation operator, :math:`C_{in}` is the input channel number, :math:`j` ranges
from :math:`0` to :math:`C_{out} - 1`, :math:`W_{ij}` corresponds to the :math:`i`-th channel of the :math:`j`-th
filter and :math:`out_{j}` corresponds to the :math:`j`-th channel of the output. :math:`W_{ij}` is a slice
of kernel and it has shape :math:`(\text{ks_h}, \text{ks_w})`, where :math:`\text{ks_h}` and
:math:`\text{ks_w}` are the height and width of the convolution kernel. The full kernel has shape
:math:`(C_{out}, C_{in} // \text{group}, \text{ks_h}, \text{ks_w})`, where group is the group number
to split the input in the channel dimension.
If the 'pad_mode' is set to be "valid", the output height and width will be
:math:`\left \lfloor{1 + \frac{H_{in} + 2 \times \text{padding} - \text{ks_h} -
(\text{ks_h} - 1) \times (\text{dilation} - 1) }{\text{stride}}} \right \rfloor` and
:math:`\left \lfloor{1 + \frac{W_{in} + 2 \times \text{padding} - \text{ks_w} -
(\text{ks_w} - 1) \times (\text{dilation} - 1) }{\text{stride}}} \right \rfloor` respectively.
The first introduction can be found in paper `Gradient Based Learning Applied to Document Recognition
<http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_.
Args:
in_channels (int): The number of input channel :math:`C_{in}`.
out_channels (int): The number of output channel :math:`C_{out}`.
kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 2 integers. Specifies the height
and width of the 2D convolution window. Single int means the value is for both the height and the width of
the kernel. A tuple of 2 ints means the first value is for the height and the other is for the
width of the kernel.
stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
the height and width of movement are both strides, or a tuple of two int numbers that
represent height and width of movement respectively. Default: 1.
pad_mode (str): Specifies padding mode. The optional values are
"same", "valid", "pad". Default: "same".
- same: Adopts the way of completion. The height and width of the output will be the same as
the input. The total number of padding will be calculated in horizontal and vertical
directions and evenly distributed to top and bottom, left and right if possible. Otherwise, the
last extra padding will be done from the bottom and the right side. If this mode is set, `padding`
must be 0.
- valid: Adopts the way of discarding. The possible largest height and width of output will be returned
without padding. Extra pixels will be discarded. If this mode is set, `padding`
must be 0.
- pad: Implicit paddings on both sides of the input. The number of `padding` will be padded to the input
Tensor borders. `padding` must be greater than or equal to 0.
padding (Union[int, tuple[int]]): Implicit paddings on both sides of the input. If `padding` is one integer,
the paddings of top, bottom, left and right are the same, equal to padding. If `padding` is a tuple
with four integers, the paddings of top, bottom, left and right will be equal to padding[0],
padding[1], padding[2], and padding[3] accordingly. Default: 0.
dilation (Union[int, tuple[int]]): The data type is int or a tuple of 2 integers. Specifies the dilation rate
to use for dilated convolution. If set to be :math:`k > 1`, there will
be :math:`k - 1` pixels skipped for each sampling location. Its value must
be greater or equal to 1 and bounded by the height and width of the
input. Default: 1.
group (int): Splits filter into groups, `in_ channels` and `out_channels` must be
divisible by the number of groups. If the group is equal to `in_channels` and `out_channels`,
this 2D convolution layer also can be called 2D depthwise convolution layer. Default: 1.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: False.
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel.
It can be a Tensor, a string, an Initializer or a number. When a string is specified,
values from 'TruncatedNormal', 'Normal', 'Uniform', 'HeUniform' and 'XavierUniform' distributions as well
as constant 'One' and 'Zero' distributions are possible. Alias 'xavier_uniform', 'he_uniform', 'ones'
and 'zeros' are acceptable. Uppercase and lowercase are both acceptable. Refer to the values of
Initializer for more details. Default: 'normal'.
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Possible
Initializer and string are the same as 'weight_init'. Refer to the values of
Initializer for more details. Default: 'zeros'.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Examples:
>>> net = nn.Conv2d(120, 240, 4, has_bias=False, weight_init='normal')
>>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
>>> net(input).shape
(1, 240, 1024, 640)
"""
@cell_attr_register
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
pad_mode='same',
padding=0,
dilation=1,
group=1,
has_bias=False,
weight_init='normal',
bias_init='zeros'):
kernel_size = twice(kernel_size)
stride = twice(stride)
self._dilation = dilation
dilation = twice(dilation)
super(Conv2d, self).__init__(
in_channels,
out_channels,
kernel_size,
stride,
pad_mode,
padding,
dilation,
group,
has_bias,
weight_init,
bias_init)
self.conv2d = P.Conv2D(out_channel=self.out_channels,
kernel_size=self.kernel_size,
mode=1,
pad_mode=self.pad_mode,
pad=self.padding,
stride=self.stride,
dilation=self.dilation,
group=self.group)
self._init_depthwise_conv2d()
self.bias_add = P.BiasAdd()
def _init_depthwise_conv2d(self):
"""Initialize depthwise conv2d op"""
if context.get_context("device_target") == "Ascend" and self.group > 1:
self.dilation = self._dilation
validator.check_integer('group', self.group, self.in_channels, Rel.EQ)
validator.check_integer('group', self.group, self.out_channels, Rel.EQ)
self.conv2d = P.DepthwiseConv2dNative(channel_multiplier=1,
kernel_size=self.kernel_size,
pad_mode=self.pad_mode,
pad=self.padding,
stride=self.stride,
dilation=self.dilation)
weight_shape = [1, self.in_channels, *self.kernel_size]
if isinstance(self.weight_init, Tensor):
self.weight_init = Tensor(self.weight_init.asnumpy().swapaxes(0, 1), self.weight_init.dtype)
if isinstance(self.weight_init, Initializer):
self.weight_init.shape = weight_shape
self.weight = Parameter(initializer(self.weight_init, weight_shape), name='weight')
def construct(self, x):
output = self.conv2d(x, self.weight)
if self.has_bias:
output = self.bias_add(output, self.bias)
return output
def extend_repr(self):
s = 'input_channels={}, output_channels={}, kernel_size={},' \
'stride={}, pad_mode={}, padding={}, dilation={}, ' \
'group={}, has_bias={},' \
'weight_init={}, bias_init={}'.format(
self.in_channels,
self.out_channels,
self.kernel_size,
self.stride,
self.pad_mode,
self.padding,
self.dilation,
self.group,
self.has_bias,
self.weight_init,
self.bias_init)
return s
@constexpr
def _check_input_3d(input_shape):
if len(input_shape) != 3:
raise ValueError(f"Input should be 3d, but got shape {input_shape}")
[docs]class Conv1d(_Conv):
r"""
1D convolution layer.
Applies a 1D convolution over an input tensor which is typically of shape :math:`(N, C_{in}, W_{in})`,
where :math:`N` is batch size and :math:`C_{in}` is channel number. For each batch of shape
:math:`(C_{in}, W_{in})`, the formula is defined as:
.. math::
out_j = \sum_{i=0}^{C_{in} - 1} ccor(W_{ij}, X_i) + b_j,
where :math:`ccor` is the cross correlation operator, :math:`C_{in}` is the input channel number, :math:`j` ranges
from :math:`0` to :math:`C_{out} - 1`, :math:`W_{ij}` corresponds to the :math:`i`-th channel of the :math:`j`-th
filter and :math:`out_{j}` corresponds to the :math:`j`-th channel of the output. :math:`W_{ij}` is a slice
of kernel and it has shape :math:`(\text{ks_w})`, where :math:`\text{ks_w}` is the width of the convolution kernel.
The full kernel has shape :math:`(C_{out}, C_{in} // \text{group}, \text{ks_w})`, where group is the group number
to split the input in the channel dimension.
If the 'pad_mode' is set to be "valid", the output width will be
:math:`\left \lfloor{1 + \frac{W_{in} + 2 \times \text{padding} - \text{ks_w} -
(\text{ks_w} - 1) \times (\text{dilation} - 1) }{\text{stride}}} \right \rfloor` respectively.
The first introduction of convolution layer can be found in paper `Gradient Based Learning Applied to Document
Recognition <http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_.
Args:
in_channels (int): The number of input channel :math:`C_{in}`.
out_channels (int): The number of output channel :math:`C_{out}`.
kernel_size (int): The data type is int. Specifies the
width of the 1D convolution window.
stride (int): The distance of kernel moving, an int number that represents
the width of movement. Default: 1.
pad_mode (str): Specifies padding mode. The optional values are
"same", "valid", "pad". Default: "same".
- same: Adopts the way of completion. The output width will be the same as the input.
The total number of padding will be calculated in the horizontal
direction and evenly distributed to left and right if possible. Otherwise, the
last extra padding will be done from the bottom and the right side. If this mode is set, `padding`
must be 0.
- valid: Adopts the way of discarding. The possible largest width of the output will be returned
without padding. Extra pixels will be discarded. If this mode is set, `padding`
must be 0.
- pad: Implicit paddings on both sides of the input. The number of `padding` will be padded to the input
Tensor borders. `padding` must be greater than or equal to 0.
padding (int): Implicit paddings on both sides of the input. Default: 0.
dilation (int): The data type is int. Specifies the dilation rate
to use for dilated convolution. If set to be :math:`k > 1`, there will
be :math:`k - 1` pixels skipped for each sampling location. Its value must
be greater or equal to 1 and bounded by the height and width of the
input. Default: 1.
group (int): Splits filter into groups, `in_ channels` and `out_channels` must be
divisible by the number of groups. Default: 1.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: False.
weight_init (Union[Tensor, str, Initializer, numbers.Number]): An initializer for the convolution kernel.
It can be a Tensor, a string, an Initializer or a number. When a string is specified,
values from 'TruncatedNormal', 'Normal', 'Uniform', 'HeUniform' and 'XavierUniform' distributions as well
as constant 'One' and 'Zero' distributions are possible. Alias 'xavier_uniform', 'he_uniform', 'ones'
and 'zeros' are acceptable. Uppercase and lowercase are both acceptable. Refer to the values of
Initializer for more details. Default: 'normal'.
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Possible
Initializer and string are the same as 'weight_init'. Refer to the values of
Initializer for more details. Default: 'zeros'.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, W_{in})`.
Outputs:
Tensor of shape :math:`(N, C_{out}, W_{out})`.
Examples:
>>> net = nn.Conv1d(120, 240, 4, has_bias=False, weight_init='normal')
>>> input = Tensor(np.ones([1, 120, 640]), mindspore.float32)
>>> net(input).shape
(1, 240, 640)
"""
@cell_attr_register
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
pad_mode='same',
padding=0,
dilation=1,
group=1,
has_bias=False,
weight_init='normal',
bias_init='zeros'):
Validator.check_value_type("kernel_size", kernel_size, [int], self.cls_name)
Validator.check_value_type("stride", stride, [int], self.cls_name)
Validator.check_value_type("padding", padding, [int], self.cls_name)
Validator.check_value_type("dilation", dilation, [int], self.cls_name)
Validator.check_integer('kernel_size', kernel_size, 1, Rel.GE, self.cls_name)
Validator.check_integer('stride', stride, 1, Rel.GE, self.cls_name)
Validator.check_integer('padding', padding, 0, Rel.GE, self.cls_name)
Validator.check_integer('dilation', dilation, 1, Rel.GE, self.cls_name)
kernel_size = (1, kernel_size)
stride = (1, stride)
dilation = (1, dilation)
get_shape = P.Shape()
get_dtype = P.DType()
if isinstance(weight_init, Tensor):
weight_init_shape = get_shape(weight_init)
Validator.check_integer('weight_init_shape', len(weight_init_shape), 3, Rel.EQ, self.cls_name)
weight_init_dtype = get_dtype(weight_init)
weight_init_value = weight_init.asnumpy()
weight_init_value = np.expand_dims(weight_init_value, 2)
weight_init = Tensor(weight_init_value, weight_init_dtype)
super(Conv1d, self).__init__(
in_channels,
out_channels,
kernel_size,
stride,
pad_mode,
padding,
dilation,
group,
has_bias,
weight_init,
bias_init)
self.padding = (0, 0, padding, padding)
self.conv2d = P.Conv2D(out_channel=self.out_channels,
kernel_size=self.kernel_size,
mode=1,
pad_mode=self.pad_mode,
pad=self.padding,
stride=self.stride,
dilation=self.dilation,
group=self.group)
self.bias_add = P.BiasAdd()
if pad_mode not in ('valid', 'same', 'pad'):
raise ValueError('Attr \'pad_mode\' of \'Conv1d\' Op passed '
+ str(pad_mode) + ', should be one of values in \'valid\', \'same\', \'pad\'.')
self.expand_dims = P.ExpandDims()
self.squeeze = P.Squeeze(2)
self.shape = P.Shape()
def construct(self, x):
x_shape = self.shape(x)
_check_input_3d(x_shape)
x = self.expand_dims(x, 2)
output = self.conv2d(x, self.weight)
if self.has_bias:
output = self.bias_add(output, self.bias)
output = self.squeeze(output)
return output
def extend_repr(self):
s = 'input_channels={}, output_channels={}, kernel_size={},' \
'stride={}, pad_mode={}, padding={}, dilation={}, ' \
'group={}, has_bias={},' \
'weight_init={}, bias_init={}'.format(
self.in_channels,
self.out_channels,
self.kernel_size,
self.stride,
self.pad_mode,
self.padding,
self.dilation,
self.group,
self.has_bias,
self.weight_init,
self.bias_init)
return s
[docs]class Conv2dTranspose(_Conv):
r"""
2D transposed convolution layer.
Compute a 2D transposed convolution, which is also known as a deconvolution
(although it is not an actual deconvolution).
Input is typically of shape :math:`(N, C, H, W)`, where :math:`N` is batch size and :math:`C` is channel number.
Args:
in_channels (int): The number of channels in the input space.
out_channels (int): The number of channels in the output space.
kernel_size (Union[int, tuple]): int or a tuple of 2 integers, which specifies the height
and width of the 2D convolution window. Single int means the value is for both the height and the width of
the kernel. A tuple of 2 ints means the first value is for the height and the other is for the
width of the kernel.
stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
the height and width of movement are both strides, or a tuple of two int numbers that
represent height and width of movement respectively. Its value must be equal to or greater than 1.
Default: 1.
pad_mode (str): Select the mode of the pad. The optional values are
"pad", "same", "valid". Default: "same".
- pad: Implicit paddings on both sides of the input.
- same: Adopted the way of completion.
- valid: Adopted the way of discarding.
padding (Union[int, tuple[int]]): Implicit paddings on both sides of the input. If `padding` is one integer,
the paddings of top, bottom, left and right are the same, equal to padding. If `padding` is a tuple
with four integers, the paddings of top, bottom, left and right will be equal to padding[0],
padding[1], padding[2], and padding[3] accordingly. Default: 0.
dilation (Union[int, tuple[int]]): The data type is int or a tuple of 2 integers. Specifies the dilation rate
to use for dilated convolution. If set to be :math:`k > 1`, there will
be :math:`k - 1` pixels skipped for each sampling location. Its value must
be greater than or equal to 1 and bounded by the height and width of the
input. Default: 1.
group (int): Splits filter into groups, `in_channels` and `out_channels` must be
divisible by the number of groups. This does not support for Davinci devices when group > 1. Default: 1.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: False.
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel.
It can be a Tensor, a string, an Initializer or a number. When a string is specified,
values from 'TruncatedNormal', 'Normal', 'Uniform', 'HeUniform' and 'XavierUniform' distributions as well
as constant 'One' and 'Zero' distributions are possible. Alias 'xavier_uniform', 'he_uniform', 'ones'
and 'zeros' are acceptable. Uppercase and lowercase are both acceptable. Refer to the values of
Initializer for more details. Default: 'normal'.
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Possible
Initializer and string are the same as 'weight_init'. Refer to the values of
Initializer for more details. Default: 'zeros'.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Examples:
>>> net = nn.Conv2dTranspose(3, 64, 4, has_bias=False, weight_init='normal')
>>> input = Tensor(np.ones([1, 3, 16, 50]), mindspore.float32)
>>> net(input)
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
pad_mode='same',
padding=0,
dilation=1,
group=1,
has_bias=False,
weight_init='normal',
bias_init='zeros'):
kernel_size = twice(kernel_size)
stride = twice(stride)
dilation = twice(dilation)
Validator.check_value_type('padding', padding, (int, tuple), self.cls_name)
if isinstance(padding, tuple):
Validator.check_integer('padding size', len(padding), 4, Rel.EQ, self.cls_name)
# out_channels and in_channels swap.
# cause Conv2DBackpropInput's out_channel refers to Conv2D's out_channel,
# then Conv2dTranspose's out_channel refers to Conv2DBackpropInput's in_channel.
super(Conv2dTranspose, self).__init__(
in_channels,
out_channels,
kernel_size,
stride,
pad_mode,
padding,
dilation,
group,
has_bias,
weight_init,
bias_init,
transposed=True)
self.in_channels = in_channels
self.out_channels = out_channels
self.shape = P.Shape()
if pad_mode not in ('valid', 'same', 'pad'):
raise ValueError('Attr \'pad_mode\' of \'Conv2dTranspose\' Op passed '
+ str(pad_mode) + ', should be one of values in \'valid\', \'same\', \'pad\'.')
self.is_valid = self.pad_mode == 'valid'
self.is_same = self.pad_mode == 'same'
self.is_pad = self.pad_mode == 'pad'
if check_bool(has_bias):
self.bias = Parameter(initializer(bias_init, [out_channels]), name='bias')
# cause Conv2DBackpropInput's out_channel refers to Conv2D's out_channel.
self.conv2d_transpose = P.Conv2DBackpropInput(out_channel=in_channels,
kernel_size=kernel_size,
mode=1,
pad_mode=pad_mode,
pad=padding,
stride=stride,
dilation=dilation,
group=group)
self.bias_add = P.BiasAdd()
if isinstance(self.padding, int):
self.padding_top, self.padding_bottom, self.padding_left, self.padding_right = (self.padding,) * 4
else:
self.padding_top, self.padding_bottom, self.padding_left, self.padding_right = self.padding
def shard(self, strategy):
self.conv2d_transpose.shard(strategy)
return self
def _deconv_output_length(self, input_length, filter_size, stride_size, dilation_size, padding):
"""Calculate the width and height of output."""
length = 0
filter_size = filter_size + (filter_size - 1) * (dilation_size - 1)
if self.is_valid:
if filter_size - stride_size > 0:
length = input_length * stride_size + filter_size - stride_size
else:
length = input_length * stride_size
elif self.is_same:
length = input_length * stride_size
elif self.is_pad:
length = input_length * stride_size - padding + filter_size - stride_size
return length
def construct(self, x):
n, _, h, w = self.shape(x)
h_out = self._deconv_output_length(h, self.kernel_size[0], self.stride[0], self.dilation[0],
self.padding_top + self.padding_bottom)
w_out = self._deconv_output_length(w, self.kernel_size[1], self.stride[1], self.dilation[1],
self.padding_left + self.padding_right)
if self.has_bias:
return self.bias_add(self.conv2d_transpose(x, self.weight, (n, self.out_channels, h_out, w_out)),
self.bias)
return self.conv2d_transpose(x, self.weight, (n, self.out_channels, h_out, w_out))
def extend_repr(self):
s = 'input_channels={}, output_channels={}, kernel_size={},' \
'stride={}, pad_mode={}, padding={}, dilation={}, ' \
'group={}, has_bias={},' \
'weight_init={}, bias_init={}'.format(self.in_channels,
self.out_channels,
self.kernel_size,
self.stride,
self.pad_mode,
self.padding,
self.dilation,
self.group,
self.has_bias,
self.weight_init,
self.bias_init)
return s
[docs]class Conv1dTranspose(_Conv):
r"""
1D transposed convolution layer.
Compute a 1D transposed convolution, which is also known as a deconvolution
(although it is not an actual deconvolution).
Input is typically of shape :math:`(N, C, W)`, where :math:`N` is batch size and :math:`C` is channel number.
Args:
in_channels (int): The number of channels in the input space.
out_channels (int): The number of channels in the output space.
kernel_size (int): int, which specifies the width of the 1D convolution window.
stride (int): The distance of kernel moving, an int number that represents
the width of movement. Default: 1.
pad_mode (str): Select the mode of the pad. The optional values are
"pad", "same", "valid". Default: "same".
- pad: Implicit paddings on both sides of the input.
- same: Adopted the way of completion.
- valid: Adopted the way of discarding.
padding (int): Implicit paddings on both sides of the input. Default: 0.
dilation (int): The data type is int. Specifies the dilation rate
to use for dilated convolution. If set to be :math:`k > 1`, there will
be :math:`k - 1` pixels skipped for each sampling location. Its value must
be greater or equal to 1 and bounded by the width of the
input. Default: 1.
group (int): Splits filter into groups, `in_channels` and `out_channels` must be
divisible by the number of groups. This is not support for Davinci devices when group > 1. Default: 1.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: False.
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel.
It can be a Tensor, a string, an Initializer or a numbers.Number. When a string is specified,
values from 'TruncatedNormal', 'Normal', 'Uniform', 'HeUniform' and 'XavierUniform' distributions as well
as constant 'One' and 'Zero' distributions are possible. Alias 'xavier_uniform', 'he_uniform', 'ones'
and 'zeros' are acceptable. Uppercase and lowercase are both acceptable. Refer to the values of
Initializer for more details. Default: 'normal'.
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Possible
Initializer and string are the same as 'weight_init'. Refer to the values of
Initializer for more details. Default: 'zeros'.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, W_{in})`.
Outputs:
Tensor of shape :math:`(N, C_{out}, W_{out})`.
Examples:
>>> net = nn.Conv1dTranspose(3, 64, 4, has_bias=False, weight_init='normal')
>>> input = Tensor(np.ones([1, 3, 50]), mindspore.float32)
>>> net(input)
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
pad_mode='same',
padding=0,
dilation=1,
group=1,
has_bias=False,
weight_init='normal',
bias_init='zeros'):
Validator.check_value_type("kernel_size", kernel_size, [int], self.cls_name)
Validator.check_value_type("stride", stride, [int], self.cls_name)
Validator.check_value_type("padding", padding, [int], self.cls_name)
Validator.check_value_type("dilation", dilation, [int], self.cls_name)
Validator.check_integer('kernel_size', kernel_size, 1, Rel.GE, self.cls_name)
Validator.check_integer('stride', stride, 1, Rel.GE, self.cls_name)
Validator.check_integer('padding', padding, 0, Rel.GE, self.cls_name)
Validator.check_integer('dilation', dilation, 1, Rel.GE, self.cls_name)
kernel_size = (1, kernel_size)
stride = (1, stride)
dilation = (1, dilation)
get_shape = P.Shape()
get_dtype = P.DType()
if isinstance(weight_init, Tensor):
weight_init_shape = get_shape(weight_init)
Validator.check_integer('weight_init_shape', len(weight_init_shape), 3, Rel.EQ, self.cls_name)
weight_init_dtype = get_dtype(weight_init)
weight_init_value = weight_init.asnumpy()
weight_init_value = np.expand_dims(weight_init_value, 2)
weight_init = Tensor(weight_init_value, weight_init_dtype)
# out_channels and in_channels swap.
# cause Conv2DBackpropInput's out_channel refers to Conv2D's out_channel,
# then Conv1dTranspose's out_channel refers to Conv2DBackpropInput's in_channel.
super(Conv1dTranspose, self).__init__(
in_channels,
out_channels,
kernel_size,
stride,
pad_mode,
padding,
dilation,
group,
has_bias,
weight_init,
bias_init,
transposed=True)
self.padding = (0, 0, padding, padding)
self.in_channels = in_channels
self.out_channels = out_channels
self.shape = P.Shape()
if pad_mode not in ('valid', 'same', 'pad'):
raise ValueError('Attr \'pad_mode\' of \'Conv1dTranspose\' Op passed '
+ str(pad_mode) + ', should be one of values in \'valid\', \'same\', \'pad\'.')
self.is_valid = self.pad_mode == 'valid'
self.is_same = self.pad_mode == 'same'
self.is_pad = self.pad_mode == 'pad'
if check_bool(has_bias):
self.bias = Parameter(initializer(bias_init, [out_channels]), name='bias')
# cause Conv2DBackpropInput's out_channel refers to Conv2D's out_channel.
self.conv2d_transpose = P.Conv2DBackpropInput(out_channel=in_channels,
kernel_size=kernel_size,
mode=1,
pad_mode=pad_mode,
pad=self.padding,
stride=stride,
dilation=dilation,
group=group)
self.bias_add = P.BiasAdd()
self.expand_dims = P.ExpandDims()
self.squeeze = P.Squeeze(2)
def shard(self, strategy):
self.conv2d_transpose.shard(strategy)
return self
def _deconv_output_length(self, input_length, filter_size, stride_size, dilation_size, padding):
"""Calculate the width and height of output."""
length = 0
filter_size = filter_size + (filter_size - 1) * (dilation_size - 1)
if self.is_valid:
if filter_size - stride_size > 0:
length = input_length * stride_size + filter_size - stride_size
else:
length = input_length * stride_size
elif self.is_same:
length = input_length * stride_size
elif self.is_pad:
length = input_length * stride_size - padding + filter_size - stride_size
return length
def construct(self, x):
x_shape = self.shape(x)
_check_input_3d(x_shape)
x = self.expand_dims(x, 2)
n, _, h, w = self.shape(x)
h_out = self._deconv_output_length(h, self.kernel_size[0], self.stride[0], self.dilation[0],
self.padding[0] + self.padding[1])
w_out = self._deconv_output_length(w, self.kernel_size[1], self.stride[1], self.dilation[1],
self.padding[2] + self.padding[3])
output = self.conv2d_transpose(x, self.weight, (n, self.out_channels, h_out, w_out))
if self.has_bias:
output = self.bias_add(output, self.bias)
output = self.squeeze(output)
return output
def extend_repr(self):
s = 'input_channels={}, output_channels={}, kernel_size={},' \
'stride={}, pad_mode={}, padding={}, dilation={}, ' \
'group={}, has_bias={},' \
'weight_init={}, bias_init={}'.format(self.in_channels,
self.out_channels,
self.kernel_size,
self.stride,
self.pad_mode,
self.padding,
self.dilation,
self.group,
self.has_bias,
self.weight_init,
self.bias_init)
return s