mindspore_xai.tool.cv.ood_net 源代码

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Out Of Distribution Network."""

import mindspore as ms
from mindspore import ops, nn
from mindspore.common.initializer import HeNormal
from mindspore.train._utils import check_value_type
from mindspore.train.callback import Callback
from mindspore.train.callback import LearningRateScheduler


class _GradNet(nn.Cell):
    """
    Network for gradient calculation.

    Args:
        network (Cell): The network to generate backpropagated gradients.
    """

    def __init__(self, network):
        super(_GradNet, self).__init__()
        self.network = network
        self.grad_op = ops.GradOperation()

    def construct(self, x):
        """
        Get backpropgated gradients.

        Returns:
            Tensor, output gradients.
        """
        grad_func = self.grad_op(self.network)
        return grad_func(x)


[文档]class OoDNet(nn.Cell): """ Out of distribution network. OoDNet takes an underlying classifier and outputs the out of distribution scores of samples. Note: A training of OoDNet is required with the classifier's training dataset inorder to give the correct OoD scores. Args: underlying (Cell): The underlying classifier, it must has the `num_features` (int) and `output_features` (bool) attributes, please check the example code for the details. num_classes (int): The number of classes for the classifier. Returns: Tensor, classification logits (if `set_train(True)` was called) or OoD scores (if `set_train(False)` was called). In the shape of :math:`(N, L)` (L is number of classes). Raises: TypeError: Be raised for any argument or input type problem. ValueError: Be raised for any input value problem. AttributeError: Be raised for `underlying` is missing any required attribute. Supported Platforms: ``Ascend`` ``GPU`` Examples: >>> import numpy as np >>> import mindspore as ms >>> from mindspore import nn, set_context, PYNATIVE_MODE >>> from mindspore_xai.tool.cv import OoDNet >>> from mindspore.common.initializer import Normal >>> >>> >>> class MyLeNet5(nn.Cell): ... def __init__(self, num_class, num_channel): ... super(MyLeNet5, self).__init__() ... ... # must add the following 2 attributes to your model ... self.num_features = 84 # no. of features, int ... self.output_features = False # output features flag, bool ... ... self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid') ... self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid') ... self.relu = nn.ReLU() ... self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) ... self.flatten = nn.Flatten() ... self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02)) ... self.fc2 = nn.Dense(120, self.num_features, weight_init=Normal(0.02)) ... self.fc3 = nn.Dense(self.num_features, num_class, weight_init=Normal(0.02)) ... ... def construct(self, x): ... x = self.conv1(x) ... x = self.relu(x) ... x = self.max_pool2d(x) ... x = self.conv2(x) ... x = self.relu(x) ... x = self.max_pool2d(x) ... x = self.flatten(x) ... x = self.relu(self.fc1(x)) ... x = self.relu(self.fc2(x)) ... ... # return the features tensor if output_features is True ... if self.output_features: ... return x ... ... x = self.fc3(x) ... return x >>> >>> set_context(mode=PYNATIVE_MODE) >>> # prepare classifier >>> net = MyLeNet5(10, num_channel=3) >>> # prepare OoD network >>> ood_net = OoDNet(net, 10) >>> inputs = ms.Tensor(np.random.rand(1, 3, 32, 32), ms.float32) >>> ood_map = ood_net(inputs) >>> print(ood_map.shape) (1, 10) """ def __init__(self, underlying, num_classes): super(OoDNet, self).__init__() check_value_type('num_classes', num_classes, int) if num_classes < 1: raise ValueError('num_classes is less then 1!') check_value_type('underlying', underlying, nn.Cell) try: check_value_type('underlying.num_features', underlying.num_features, int) if underlying.num_features < 1: raise ValueError('underlying.num_features is less then 1!') check_value_type('underlying.output_features', underlying.output_features, bool) underlying.output_features = False # assignment test except AttributeError: raise AttributeError('underlying has no num_features or output_features attribute!') self._num_classes = num_classes self._underlying = underlying self._h = nn.Dense(in_channels=self._underlying.num_features, out_channels=num_classes, has_bias=False, weight_init=HeNormal(nonlinearity='relu')) self._expand_dims = ops.ExpandDims() self._g_fc = nn.Dense(in_channels=self._underlying.num_features, out_channels=1) # BatchNorm1d is not working on GPU, workaround with BatchNorm2d self._g_bn2d = nn.BatchNorm2d(num_features=1) self._g_squeeze = ops.Squeeze(axis=(2, 3)) self._g_sigmoid = nn.Sigmoid() self._matmul_weight = ops.MatMul(transpose_a=False, transpose_b=True) self._norm = nn.Norm(axis=(1,)) self._transpose = ops.Transpose() self._num_features = self._underlying.num_features self._tile = ops.Tile() self._reduce_max = ops.ReduceMax(keep_dims=True) self._ge = ops.GreaterEqual() self._grad_net = None self._output_max_score = False self._is_train = False self.set_train(False) self.set_grad(False) @property def underlying(self): """ Get the underlying classifier. Returns: nn.Cell, the underlying classifier. """ return self._underlying @property def num_classes(self): """ Get the number of classes. Returns: int, the number of classes. """ return self._num_classes
[文档] def set_train(self, mode=True): """ Set training mode. Args: mode (bool, optional): It is in training mode. Default: ``True``. """ super(OoDNet, self).set_train(mode) self._is_train = mode
[文档] def construct(self, x): """ Forward inferences the classification logits or OOD scores. Args: x (Tensor): Input tensor for the underlying classifier. Returns: Tensor, logits of softmax with temperature (if `set_train(True)` was called) or OOD scores (if `set_train(False)` was called). In the shape of :math:`(N, L)` (L is number of classes). """ self._underlying.output_features = True feat = self._underlying(x) self._underlying.output_features = False if len(feat.shape) != 2: raise ValueError('The underlying output features is not 2 dimensional!') if feat.shape[1] != self._num_features: raise ValueError(f'The underlying output feature count:{feat.shape[1]} is different ' f'from underlying.num_features:{self._num_features}.') scores = self._ood_scores(feat) if self._is_train: feat = self._g_fc(feat) feat = self._expand_dims(feat, 2) feat = self._expand_dims(feat, 2) feat = self._g_bn2d(feat) feat = self._g_squeeze(feat) # logits of softmax with temperature temperature = self._g_sigmoid(feat) logits = scores / temperature return logits if self._output_max_score: scores = self._reduce_max(scores, 1) return scores
[文档] def get_train_parameters(self, train_underlying=False): """ Get the training parameters. Args: train_underlying (bool, optional): Set to ``True`` to include the underlying classifier parameters. Default: ``False``. Returns: list[Parameter], parameters. """ if train_underlying: parameters = list(self._underlying.get_parameters()) else: parameters = list() parameters.extend(self._h.get_parameters()) parameters.extend(self._g_fc.get_parameters()) return parameters
[文档] def prepare_train(self, learning_rate=0.1, momentum=0.9, weight_decay=0.0001, lr_base_factor=0.1, lr_epoch_denom=30, train_underlying=False): """ Creates necessities for training. Args: learning_rate (float, optional): The optimizer learning rate. Default: ``0.1``. momentum (float, optional): The optimizer momentum. Default: ``0.9``. weight_decay (float, optional): The optimizer weight decay. Default: ``0.0001``. lr_base_factor (float, optional): The base scaling factor of learning rate scheduler. Default: ``0.1``. lr_epoch_denom (int, optional): The epoch denominator of learning rate scheduler. Default: ``30``. train_underlying (bool, optional): ``True`` to train the underlying classifier as well.Default: ``False``. Returns: - Optimizer, optimizer. - LearningRateScheduler, learning rate scheduler. """ parameters = self.get_train_parameters(train_underlying) scheduler = _EpochLrScheduler(learning_rate, lr_base_factor, lr_epoch_denom) optimizer = nn.SGD(parameters, learning_rate=learning_rate, momentum=momentum, weight_decay=weight_decay) return optimizer, scheduler
[文档] def train(self, dataset, loss_fn, callbacks=None, epoch=90, optimizer=None, scheduler=None, **kwargs): """ Trains this OoD net. Args: dataset (Dataset): The training dataset, expecting (data, one-hot label) items. loss_fn (Cell): The loss function, if the classifier's activation function is `nn.Softmax`, then use `nn.SoftmaxCrossEntropyWithLogits`, if the activation function is `nn.Sigmoid`, then use `nn.BCEWithLogitsLoss`. callbacks (Callback, optional): The train callbacks. Default: ``None``. epoch (int, optional): The number of epochs to be trained. Default: ``90``. optimizer (Optimizer, optional): The optimizer. The one from `prepare_train()` will be used if which is set to ``None``. Default: ``None``. scheduler (LearningRateScheduler, optional): The learning rate scheduler. The one from `prepare_train()` will be used if which is set to None. Default: ``None``. **kwargs (any, optional): Keyword arguments for `prepare_train()`. """ self.set_train(True) self.set_grad(True) if optimizer is None or scheduler is None: auto_optimizer, auto_scheduler = self.prepare_train(**kwargs) if optimizer is None: optimizer = auto_optimizer if scheduler is None: scheduler = auto_scheduler model = ms.Model(self, loss_fn=loss_fn, optimizer=optimizer) if callbacks is None: callbacks = [scheduler] elif isinstance(callbacks, list): callbacks_ = [scheduler] callbacks_.extend(callbacks) callbacks = callbacks_ elif isinstance(callbacks, Callback): callbacks = [scheduler, callbacks] else: raise ValueError('invalid callbacks type') model.train(epoch, dataset, callbacks=callbacks) self.set_train(False) self.set_grad(False)
def _ood_scores(self, feat): """Forward inferences the OOD scores.""" norm_f = self._normalize(feat) norm_w = self._normalize(self._h.weight) scores = self._matmul_weight(norm_f, norm_w) return scores def _normalize(self, x): """Normalizes an tensor.""" norm = self._norm(x) tiled_norm = self._tile((norm + 1e-4), (self._num_features, 1)) tiled_norm = self._transpose(tiled_norm, (1, 0)) x = x / tiled_norm return x
class _EpochLrScheduler(LearningRateScheduler): """ Epoch based learning rate scheduler. Args: base_lr (float): The base learning rate. base_factor (float): The base scaling factor. denominator (int): The epoch denominator. """ def __init__(self, base_lr, base_factor, denominator): super(_EpochLrScheduler, self).__init__(self._lr_function) self.base_lr = base_lr self.base_factor = base_factor self.denominator = denominator self._cur_epoch_num = 1 def epoch_end(self, run_context): """On an epoch was ended.""" cb_params = run_context.original_args() self._cur_epoch_num = cb_params.cur_epoch_num def _lr_function(self, lr, cur_step_num): """Returns the dynamic learning rate.""" del lr del cur_step_num return self.base_lr * (self.base_factor ** (self._cur_epoch_num // self.denominator))