在线运行下载Notebook下载样例代码查看源文件

基本介绍 || 快速入门 || 张量 Tensor || 数据集 Dataset || 数据变换 Transforms || 网络构建 || 函数式自动微分 || 模型训练 || 保存与加载 || 使用静态图加速

使用静态图加速

背景介绍

AI编译框架分为两种运行模式,分别是动态图模式以及静态图模式。MindSpore默认情况下是以动态图模式运行,但也支持手工切换为静态图模式。两种运行模式的详细介绍如下:

动态图模式

动态图的特点是计算图的构建和计算同时发生(Define by run),其符合Python的解释执行方式,在计算图中定义一个Tensor时,其值就已经被计算且确定,因此在调试模型时较为方便,能够实时得到中间结果的值,但由于所有节点都需要被保存,导致难以对整个计算图进行优化。

在MindSpore中,动态图模式又被称为PyNative模式。由于动态图的解释执行特性,在脚本开发和网络流程调试过程中,推荐使用动态图模式进行调试。 如需要手动控制框架采用PyNative模式,可以通过以下代码进行网络构建:

[1]:
import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
ms.set_context(mode=ms.PYNATIVE_MODE)  # 使用set_context进行动态图模式的配置

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
output = model(input)
print(output)
[[-0.00134926 -0.13563682 -0.02863023 -0.05452826  0.03290743 -0.12423715
  -0.0582641  -0.10854103 -0.08558805  0.06099342]
 [-0.00134926 -0.13563682 -0.02863023 -0.05452826  0.03290743 -0.12423715
  -0.0582641  -0.10854103 -0.08558805  0.06099342]
 [-0.00134926 -0.13563682 -0.02863023 -0.05452826  0.03290743 -0.12423715
  -0.0582641  -0.10854103 -0.08558805  0.06099342]
 [-0.00134926 -0.13563682 -0.02863023 -0.05452826  0.03290743 -0.12423715
  -0.0582641  -0.10854103 -0.08558805  0.06099342]
 [-0.00134926 -0.13563682 -0.02863023 -0.05452826  0.03290743 -0.12423715
  -0.0582641  -0.10854103 -0.08558805  0.06099342]
 ...
 [-0.00134926 -0.13563682 -0.02863023 -0.05452826  0.03290743 -0.12423715
  -0.0582641  -0.10854103 -0.08558805  0.06099342]
 [-0.00134926 -0.13563682 -0.02863023 -0.05452826  0.03290743 -0.12423715
  -0.0582641  -0.10854103 -0.08558805  0.06099342]
 [-0.00134926 -0.13563682 -0.02863023 -0.05452826  0.03290743 -0.12423715
  -0.0582641  -0.10854103 -0.08558805  0.06099342]
 [-0.00134926 -0.13563682 -0.02863023 -0.05452826  0.03290743 -0.12423715
  -0.0582641  -0.10854103 -0.08558805  0.06099342]]

静态图模式

相较于动态图而言,静态图的特点是将计算图的构建和实际计算分开(Define and run)。有关静态图模式的运行原理,可以参考静态图语法支持

在MindSpore中,静态图模式又被称为Graph模式,在Graph模式下,基于图优化、计算图整图下沉等技术,编译器可以针对图进行全局的优化,获得较好的性能,因此比较适合网络固定且需要高性能的场景。

如需要手动控制框架采用静态图模式,可以通过以下代码进行网络构建:

[2]:
import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
ms.set_context(mode=ms.GRAPH_MODE)  # 使用set_context进行运行静态图模式的配置

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
output = model(input)
print(output)
[[ 0.05363735  0.05117104 -0.03343301  0.06347139  0.07546629  0.03263091
   0.02790363  0.06269836  0.01838502  0.04387159]
 [ 0.05363735  0.05117104 -0.03343301  0.06347139  0.07546629  0.03263091
   0.02790363  0.06269836  0.01838502  0.04387159]
 [ 0.05363735  0.05117104 -0.03343301  0.06347139  0.07546629  0.03263091
   0.02790363  0.06269836  0.01838502  0.04387159]
 [ 0.05363735  0.05117104 -0.03343301  0.06347139  0.07546629  0.03263091
   0.02790363  0.06269836  0.01838502  0.04387159]
 ...
 [ 0.05363735  0.05117104 -0.03343301  0.06347139  0.07546629  0.03263091
   0.02790363  0.06269836  0.01838502  0.04387159]
 [ 0.05363735  0.05117104 -0.03343301  0.06347139  0.07546629  0.03263091
   0.02790363  0.06269836  0.01838502  0.04387159]
 [ 0.05363735  0.05117104 -0.03343301  0.06347139  0.07546629  0.03263091
   0.02790363  0.06269836  0.01838502  0.04387159]
 [ 0.05363735  0.05117104 -0.03343301  0.06347139  0.07546629  0.03263091
   0.02790363  0.06269836  0.01838502  0.04387159]]

静态图模式的使用场景

MindSpore编译器重点面向Tensor数据的计算以及其微分处理。因此使用MindSpore API以及基于Tensor对象的操作更适合使用静态图编译优化。其他操作虽然可以部分入图编译,但实际优化作用有限。另外,静态图模式先编译后执行的模式导致其存在编译耗时。因此,如果函数无需反复执行,那么使用静态图加速也可能没有价值。

有关使用静态图来进行网络编译的示例,请参考网络构建

静态图模式开启方式

通常情况下,由于动态图的灵活性,我们会选择使用PyNative模式来进行自由的神经网络构建,以实现模型的创新和优化。但是当需要进行性能加速时,我们需要对神经网络部分或整体进行加速。MindSpore提供了两种切换为图模式的方式,分别是基于装饰器的开启方式以及基于全局context的开启方式。

基于装饰器的开启方式

MindSpore提供了jit装饰器,可以通过修饰Python函数或者Python类的成员函数使其被编译成计算图,通过图优化等技术提高运行速度。此时我们可以简单的对想要进行性能优化的模块进行图编译加速,而模型其他部分,仍旧使用解释执行方式,不丢失动态图的灵活性。无论全局context是设置成静态图模式还是动态图模式,被jit修饰的部分始终会以静态图模式进行运行。

在需要对Tensor的某些运算进行编译加速时,可以在其定义的函数上使用jit修饰器,在调用该函数时,该模块自动被编译为静态图。需要注意的是,jit装饰器只能用来修饰函数,无法对类进行修饰。jit的使用示例如下:

[3]:
import numpy as np
import mindspore as ms
from mindspore import nn, Tensor

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))

@ms.jit  # 使用ms.jit装饰器,使被装饰的函数以静态图模式运行
def run(x):
    model = Network()
    return model(x)

output = run(input)
print(output)
[[-0.12126954  0.06986676 -0.2230821  -0.07087803 -0.01003947  0.01063392
   0.10143848 -0.0200909  -0.09724037  0.0114444 ]
 [-0.12126954  0.06986676 -0.2230821  -0.07087803 -0.01003947  0.01063392
   0.10143848 -0.0200909  -0.09724037  0.0114444 ]
 [-0.12126954  0.06986676 -0.2230821  -0.07087803 -0.01003947  0.01063392
   0.10143848 -0.0200909  -0.09724037  0.0114444 ]
 [-0.12126954  0.06986676 -0.2230821  -0.07087803 -0.01003947  0.01063392
   0.10143848 -0.0200909  -0.09724037  0.0114444 ]
 ...
 [-0.12126954  0.06986676 -0.2230821  -0.07087803 -0.01003947  0.01063392
   0.10143848 -0.0200909  -0.09724037  0.0114444 ]
 [-0.12126954  0.06986676 -0.2230821  -0.07087803 -0.01003947  0.01063392
   0.10143848 -0.0200909  -0.09724037  0.0114444 ]
 [-0.12126954  0.06986676 -0.2230821  -0.07087803 -0.01003947  0.01063392
   0.10143848 -0.0200909  -0.09724037  0.0114444 ]
 [-0.12126954  0.06986676 -0.2230821  -0.07087803 -0.01003947  0.01063392
   0.10143848 -0.0200909  -0.09724037  0.0114444 ]]

除使用修饰器外,也可使用函数变换方式调用jit方法,示例如下:

[4]:
import numpy as np
import mindspore as ms
from mindspore import nn, Tensor

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))

def run(x):
    model = Network()
    return model(x)

run_with_jit = ms.jit(run)  # 通过调用jit将函数转换为以静态图方式执行
output = run(input)
print(output)
[[ 0.11027216 -0.09628229  0.0457969   0.05396656 -0.06958974  0.0428197
  -0.1572069  -0.14151613 -0.04531277  0.07521383]
 [ 0.11027216 -0.09628229  0.0457969   0.05396656 -0.06958974  0.0428197
  -0.1572069  -0.14151613 -0.04531277  0.07521383]
 [ 0.11027216 -0.09628229  0.0457969   0.05396656 -0.06958974  0.0428197
  -0.1572069  -0.14151613 -0.04531277  0.07521383]
 [ 0.11027216 -0.09628229  0.0457969   0.05396656 -0.06958974  0.0428197
  -0.1572069  -0.14151613 -0.04531277  0.07521383]
 ...
 [ 0.11027216 -0.09628229  0.0457969   0.05396656 -0.06958974  0.0428197
  -0.1572069  -0.14151613 -0.04531277  0.07521383]
 [ 0.11027216 -0.09628229  0.0457969   0.05396656 -0.06958974  0.0428197
  -0.1572069  -0.14151613 -0.04531277  0.07521383]
 [ 0.11027216 -0.09628229  0.0457969   0.05396656 -0.06958974  0.0428197
  -0.1572069  -0.14151613 -0.04531277  0.07521383]
 [ 0.11027216 -0.09628229  0.0457969   0.05396656 -0.06958974  0.0428197
  -0.1572069  -0.14151613 -0.04531277  0.07521383]]

当我们需要对神经网络的某部分进行加速时,可以直接在construct方法上使用jit修饰器,在调用实例化对象时,该模块自动被编译为静态图。示例如下:

[5]:
import numpy as np
import mindspore as ms
from mindspore import nn, Tensor

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    @ms.jit  # 使用ms.jit装饰器,使被装饰的函数以静态图模式运行
    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
model = Network()
output = model(input)
print(output)
[[ 0.10522258  0.06597593 -0.09440921 -0.04883489  0.07194916  0.1343117
  -0.06813788  0.01986085  0.0216996  -0.05345828]
 [ 0.10522258  0.06597593 -0.09440921 -0.04883489  0.07194916  0.1343117
  -0.06813788  0.01986085  0.0216996  -0.05345828]
 [ 0.10522258  0.06597593 -0.09440921 -0.04883489  0.07194916  0.1343117
  -0.06813788  0.01986085  0.0216996  -0.05345828]
 [ 0.10522258  0.06597593 -0.09440921 -0.04883489  0.07194916  0.1343117
  -0.06813788  0.01986085  0.0216996  -0.05345828]
 ...
 [ 0.10522258  0.06597593 -0.09440921 -0.04883489  0.07194916  0.1343117
  -0.06813788  0.01986085  0.0216996  -0.05345828]
 [ 0.10522258  0.06597593 -0.09440921 -0.04883489  0.07194916  0.1343117
  -0.06813788  0.01986085  0.0216996  -0.05345828]
 [ 0.10522258  0.06597593 -0.09440921 -0.04883489  0.07194916  0.1343117
  -0.06813788  0.01986085  0.0216996  -0.05345828]
 [ 0.10522258  0.06597593 -0.09440921 -0.04883489  0.07194916  0.1343117
  -0.06813788  0.01986085  0.0216996  -0.05345828]]

基于context的开启方式

context模式是一种全局的设置模式。代码示例如下:

[6]:
import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
ms.set_context(mode=ms.GRAPH_MODE)  # 使用set_context进行运行静态图模式的配置

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
output = model(input)
print(output)
[[ 0.08501796 -0.04404321 -0.05165704  0.00357929  0.00051521  0.00946456
   0.02748473 -0.19415936 -0.00278988  0.04024826]
 [ 0.08501796 -0.04404321 -0.05165704  0.00357929  0.00051521  0.00946456
   0.02748473 -0.19415936 -0.00278988  0.04024826]
 [ 0.08501796 -0.04404321 -0.05165704  0.00357929  0.00051521  0.00946456
   0.02748473 -0.19415936 -0.00278988  0.04024826]
 [ 0.08501796 -0.04404321 -0.05165704  0.00357929  0.00051521  0.00946456
   0.02748473 -0.19415936 -0.00278988  0.04024826]
 ...
 [ 0.08501796 -0.04404321 -0.05165704  0.00357929  0.00051521  0.00946456
   0.02748473 -0.19415936 -0.00278988  0.04024826]
 [ 0.08501796 -0.04404321 -0.05165704  0.00357929  0.00051521  0.00946456
   0.02748473 -0.19415936 -0.00278988  0.04024826]
 [ 0.08501796 -0.04404321 -0.05165704  0.00357929  0.00051521  0.00946456
   0.02748473 -0.19415936 -0.00278988  0.04024826]
 [ 0.08501796 -0.04404321 -0.05165704  0.00357929  0.00051521  0.00946456
   0.02748473 -0.19415936 -0.00278988  0.04024826]]

静态图的语法约束

在Graph模式下,Python代码并不是由Python解释器去执行,而是将代码编译成静态计算图,然后执行静态计算图。因此,编译器无法支持全量的Python语法。MindSpore的静态图编译器维护了Python常用语法子集,以支持神经网络的构建及训练。详情可参考静态图语法支持

JitConfig配置选项

在图模式下,可以通过使用JitConfig配置选项来一定程度的自定义编译流程,目前JitConfig支持的配置参数如下:

  • jit_level: 用于控制优化等级。

  • exec_mode: 用于控制模型执行方式。

  • jit_syntax_level: 设置静态图语法支持级别,详细介绍请见静态图语法支持

静态图高级编程技巧

使用静态图高级编程技巧可以有效地提高编译效率以及执行效率,并可以使程序运行的更加稳定。详情可参考静态图高级编程技巧