{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "[![在线运行](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.2/resource/_static/logo_modelarts.svg)](https://authoring-modelarts-cnnorth4.huaweicloud.com/console/lab?share-url-b64=aHR0cHM6Ly9taW5kc3BvcmUtd2Vic2l0ZS5vYnMuY24tbm9ydGgtNC5teWh1YXdlaWNsb3VkLmNvbS9ub3RlYm9vay9yMi4yL3R1dG9yaWFscy96aF9jbi9iZWdpbm5lci9taW5kc3BvcmVfc2F2ZV9sb2FkLmlweW5i&imageid=4c43b3ad-9df7-4b83-a096-c775dc4ba243) [![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.2/resource/_static/logo_notebook.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/r2.2/tutorials/zh_cn/beginner/mindspore_save_load.ipynb) \n",
    "[![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.2/resource/_static/logo_download_code.svg)](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/r2.2/tutorials/zh_cn/beginner/mindspore_save_load.py) \n",
    "[![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.2/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/r2.2/tutorials/source_zh_cn/beginner/save_load.ipynb)\n",
    "\n",
    "[基本介绍](https://www.mindspore.cn/tutorials/zh-CN/r2.2/beginner/introduction.html) || [快速入门](https://www.mindspore.cn/tutorials/zh-CN/r2.2/beginner/quick_start.html) || [张量 Tensor](https://www.mindspore.cn/tutorials/zh-CN/r2.2/beginner/tensor.html) || [数据集 Dataset](https://www.mindspore.cn/tutorials/zh-CN/r2.2/beginner/dataset.html) || [数据变换 Transforms](https://www.mindspore.cn/tutorials/zh-CN/r2.2/beginner/transforms.html) || [网络构建](https://www.mindspore.cn/tutorials/zh-CN/r2.2/beginner/model.html) || [函数式自动微分](https://www.mindspore.cn/tutorials/zh-CN/r2.2/beginner/autograd.html) || [模型训练](https://www.mindspore.cn/tutorials/zh-CN/r2.2/beginner/train.html) || **保存与加载** || [使用静态图加速](https://www.mindspore.cn/tutorials/zh-CN/r2.2/beginner/accelerate_with_static_graph.html)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "# 保存与加载\n",
    "\n",
    "上一章节主要介绍了如何调整超参数,并进行网络模型训练。在训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署,本章节我们将介绍如何保存与加载模型。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import mindspore\n",
    "from mindspore import nn\n",
    "from mindspore import Tensor"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "def network():\n",
    "    model = nn.SequentialCell(\n",
    "                nn.Flatten(),\n",
    "                nn.Dense(28*28, 512),\n",
    "                nn.ReLU(),\n",
    "                nn.Dense(512, 512),\n",
    "                nn.ReLU(),\n",
    "                nn.Dense(512, 10))\n",
    "    return model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "## 保存和加载模型权重\n",
    "\n",
    "保存模型使用`save_checkpoint`接口,传入网络和指定的保存路径:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [],
   "source": [
    "model = network()\n",
    "mindspore.save_checkpoint(model, \"model.ckpt\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "要加载模型权重,需要先创建相同模型的实例,然后使用`load_checkpoint`和`load_param_into_net`方法加载参数。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[]"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model = network()\n",
    "param_dict = mindspore.load_checkpoint(\"model.ckpt\")\n",
    "param_not_load, _ = mindspore.load_param_into_net(model, param_dict)\n",
    "print(param_not_load)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "pycharm": {
     "name": "#%% md\n"
    }
   },
   "source": [
    "> `param_not_load`是未被加载的参数列表,为空时代表所有参数均加载成功。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 保存和加载MindIR\n",
    "\n",
    "除Checkpoint外,MindSpore提供了云侧(训练)和端侧(推理)统一的[中间表示(Intermediate Representation,IR)](https://www.mindspore.cn/docs/zh-CN/r2.2/design/all_scenarios.html#中间表示mindir)。可使用`export`接口直接将模型保存为MindIR。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "model = network()\n",
    "inputs = Tensor(np.ones([1, 1, 28, 28]).astype(np.float32))\n",
    "mindspore.export(model, inputs, file_name=\"model\", file_format=\"MINDIR\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "> MindIR同时保存了Checkpoint和模型结构,因此需要定义输入Tensor来获取输入shape。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "已有的MindIR模型可以方便地通过`load`接口加载,传入`nn.GraphCell`即可进行推理。\n",
    "\n",
    "> `nn.GraphCell`仅支持图模式。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(1, 10)"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "mindspore.set_context(mode=mindspore.GRAPH_MODE)\n",
    "\n",
    "graph = mindspore.load(\"model.mindir\")\n",
    "model = nn.GraphCell(graph)\n",
    "outputs = model(inputs)\n",
    "print(outputs.shape)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "MindSpore",
   "language": "python",
   "name": "mindspore"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.5"
  },
  "vscode": {
   "interpreter": {
    "hash": "8c9da313289c39257cb28b126d2dadd33153d4da4d524f730c81a4aaccbd2ca7"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}