{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "[![在线运行](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.1/resource/_static/logo_modelarts.svg)](https://authoring-modelarts-cnnorth4.huaweicloud.com/console/lab?share-url-b64=aHR0cHM6Ly9vYnMuZHVhbHN0YWNrLmNuLW5vcnRoLTQubXlodWF3ZWljbG91ZC5jb20vbWluZHNwb3JlLXdlYnNpdGUvbm90ZWJvb2svcjIuMS90dXRvcmlhbHMvemhfY24vYWR2YW5jZWQvZGF0YXNldC9taW5kc3BvcmVfZWFnZXIuaXB5bmI==&imageid=96a10081-8eac-4009-9b45-25a9d4f599b6) [![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.1/resource/_static/logo_notebook.svg)](https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/r2.1/tutorials/zh_cn/advanced/dataset/mindspore_eager.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.1/resource/_static/logo_download_code.png)](https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/r2.1/tutorials/zh_cn/advanced/dataset/mindspore_eager.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.1/resource/_static/logo_source.svg)](https://gitee.com/mindspore/docs/blob/r2.1/tutorials/source_zh_cn/advanced/dataset/eager.ipynb)\n",
    "\n",
    "# 轻量化数据处理\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "在资源条件允许的情况下,为了追求更高的性能,一般使用Pipeline模式执行数据变换Transforms。\n",
    "\n",
    "基于Pipeline模式执行的最大特点是需要使用`map`方法,如下图中将`Resize`、`Crop`、`HWC2CHW`交由`map`调度,由其负责启动和执行给定的Transform,对Pipeline的数据进行映射变换。\n",
    "\n",
    "![pipelinemode1](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.1/tutorials/source_zh_cn/advanced/dataset/images/pipeline_mode.jpeg)\n",
    "\n",
    "虽然构建数据管道可以批量处理输入数据,但是数据管道的API设计要求用户从构建输入源开始,逐步定义数据管道中的各个Transform,仅当在定义`map`的时候才会涉及与用户输入数据高度相关的Transform。\n",
    "\n",
    "无疑,用户只想重点关注这些与其相关度最高的代码,但其他相关度较低的代码却在整个代码场景中为用户增加了不必要的负担。\n",
    "\n",
    "因此,MindSpore提供了一种轻量化的数据处理执行方式,称为Eager模式。\n",
    "\n",
    "在Eager模式下,执行Transforms不需要依赖构建数据管道`map`,而是以函数式调用的方式执行Transforms。因此代码编写会更为简洁且能立即执行得到运行结果,推荐在小型数据增强实验、模型推理等轻量化场景中使用。\n",
    "\n",
    "![eagermode1](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.1/tutorials/source_zh_cn/advanced/dataset/images/eager_mode.jpeg)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "MindSpore目前支持在Eager模式执行各种Transform,具体如下所示,更多数据变换接口参见API文档。\n",
    "\n",
    "- [vision模块](https://mindspore.cn/docs/zh-CN/r2.1/api_python/mindspore.dataset.transforms.html#视觉)\n",
    "\n",
    "    - 子模块transforms,基于OpenCV/Pillow实现的数据变换。\n",
    "\n",
    "- [text模块](https://mindspore.cn/docs/zh-CN/r2.1/api_python/mindspore.dataset.transforms.html#文本)\n",
    "\n",
    "    - 子模块transforms,基于Jieba/ICU4C等库实现的数据变换。\n",
    "\n",
    "- [transforms模块](https://www.mindspore.cn/docs/zh-CN/r2.1/api_python/mindspore.dataset.transforms.html)\n",
    "\n",
    "    - 子模块transforms,基于C++/Python/NumPy实现的通用数据变换。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Eager模式\n",
    "\n",
    "下面将简要介绍各Transforms模块的Eager模式使用方法。使用Eager模式,只需要将Transform本身当成可执行函数即可。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 数据准备\n",
    "\n",
    "以下示例代码将图片数据下载到指定位置。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "Downloading data from https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/datasets/banana.jpg (17 kB)\n",
      "\n",
      "file_sizes: 100%|███████████████████████████| 17.1k/17.1k [00:00<00:00, 677kB/s]\n",
      "Successfully downloaded file to ./banana.jpg\n"
     ]
    },
    {
     "output_type": "execute_result",
     "data": {
      "text/plain": [
       "'./banana.jpg'"
      ]
     },
     "metadata": {},
     "execution_count": 1
    }
   ],
   "source": [
    "from download import download\n",
    "\n",
    "url = \"https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/datasets/banana.jpg\"\n",
    "download(url, './banana.jpg', replace=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### vision\n",
    "\n",
    "此示例将使用`mindspore.dataset.vision`模块中的Transform,对给定图像进行变换。\n",
    "\n",
    "您仅需要关注使用何种数据变换,而不需要关注数据管道的任何代码。\n",
    "\n",
    "Vision Transform的Eager模式支持`numpy.array`或`PIL.Image`类型的数据作为入参。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "Image.type: <class 'PIL.Image.Image'>, Image.shape: (356, 200)\n",
      "Image.type: <class 'PIL.Image.Image'>, Image.shape: (569, 320)\n",
      "Image.type: <class 'PIL.Image.Image'>, Image.shape: (280, 280)\n",
      "Image.type: <class 'PIL.Image.Image'>, Image.shape: (360, 360)\n"
     ]
    },
    {
     "output_type": "display_data",
     "data": {
      "text/plain": "<Figure size 432x288 with 2 Axes>",
      "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"198.378068pt\" version=\"1.1\" viewBox=\"0 0 375.2875 198.378068\" width=\"375.2875pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <defs>\n  <style type=\"text/css\">\n*{stroke-linecap:butt;stroke-linejoin:round;}\n  </style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 198.378068 \nL 375.2875 198.378068 \nL 375.2875 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 33.2875 141.156736 \nL 185.469318 141.156736 \nL 185.469318 55.661332 \nL 33.2875 55.661332 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#p655743e8d2)\">\n    <image height=\"86\" id=\"image86e2c15a9d\" transform=\"scale(1 -1)translate(0 -86)\" width=\"153\" x=\"33.2875\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAJkAAABWCAYAAADc4jTbAAAABHNCSVQICAgIfAhkiAAAIABJREFUeJycvXmQLcl13vc7mVlVd+vu1/2WefNmMPtgMFiHIEASiyiBoEjZtCnJDCMkWYpQmLQtioQk2xFeJFmGIywhZEfQlkzLpihRVDDCcoTMoEgTpAQSFEEFKRIcEgsHy2AWALPP2/v1dm9VLv4jM6vyVt/3BnRFdHT3vbVkZZ485zvfOXlSnvrKMyGEQAgBpRTeW/L/WlcAdF2H1hoAFegPR0ATUCLgBUQIIZ4QQkBEkPyZeNaP8n81+j8eEuI3dzrK5236Lv+Un7kQ0CJveJ/8DviA9x4RwTnXv5ML/rbXeEc8D5deN/TXee9jXxMIzq/1k1KKIOBCQEIAHwhFU0PR7twm7/3as/O9y8/y/cvfQH99+ft215VH7of8POfcqf6M8uQxuYPKhyil1jpOa81wnuo7SfAQUoMIhBA7SFE0SDwi4P3phkohlP//jyycARE9DLL3/fvk5+bOUIXgKTWIcRbILFjB56FiTVi994TgIARAxd9K4mcovHXpvOEZPoS1QXTOgZK+L0vhDRKFSYAgQz/Ffh4mSimYzrk4JundQ9+mcEoQy/cthSoLxbhfSnlYmwzFJF4T8GJCaq2jkJUDEYJPN3JQCEv/AjZ1hvOIEehfPmusNHvTpWVHjwWqbDj84QRuGPSy0+Igr2tmf0royg4qB7dvk1/XgN57JGkzNMMgxm+joNiozEOwaATv6Z/vrBvuldtFAE/f77ld1jtcmpA+jU2e5FkLlpO1HOCyzfkZpbBs6vtS0PK982dZO42VQSmY43uMz7PWYsbqUWuTzKMhhOGB+ccGqLUmiI8mgCxYIDIMeh7kdYFYV8uD4HnGApYF1gESilnVay4PBLxEEy7pcyUKay2iNG3bYozBWts/K89UozTOewgutth5bIhaxbqQhNKiQuz83tzbcKojJYReICT1gHeO4JMwKMF2UdNoI3hvo/YLCilMTRBJloDY9yrgfSAENzJfHkJAlCIUwtyPZdY2IjgbtYkQB1xrjYJeEwIEClggIU6AwkZLHNxTQgiDxstty5M2C60xZl3I8gBAtrl6beCdcxiVVW9IDx8etKkRuQFZkEqtOT7KGdOf5wMihWaR/H0gBJ8ELGPFgHctShmsjTiy11TOxuvSvbtuFdvjA4HUMd5hrYeg8Gngnbd9+0oNuablCk2ZOz6bQesdOBAlIJ62dcX7e3wBZUIAQXBpgCWqxigG3heTWRC1jqXWTH3xW8VGIiJUCVefGp8AIQupELW2HTBXkOGa8QQrzXG2duX7O+cwWXjyCc5ZjDGpA4mzWSkg9KBfKUnvvt7R60JVCk+UxrFtL7Xa+Pq1WRZcFA41aJGyQ3tnJJmZ1q7iu3Q2YUdBMeAS59v+Pi4Jh7euhwrO+d5simIdWKPoOtuborKTS5MVB16SRvB4Gd67F4gAHo/WOj0j9UmyBsqp+AzronPVD3DAhfVBlh675cmsCmHKGjGglOmxHUSNlsdeQtIasAYpxuNaTrDsEI4/Ly2ZUQHC6Ibee3AeMbp/WKU0FovWVW9+pJhZY8keMJFFKX3bxo7xRXmfKB6+12T9IKwNOmsvFtJv5xzKVIQkMM46JOGn4DzWu/i3d71Q9B5SEFwylWMvC6X7SenH2I3h3F6g07nZVJWgWCmFCy59pgo8nCaSCnS2W3t+1hQiCufiPa09jb3GnuIgOMk0p+HQInjXJdFViNbZWPS4zjqHUXrwikcauxS2cgxzn0bvUuhNSwbgMrqg7KQSaymt1mbxWODGgH+scofPBJGhYxSCDxajFKSOyW1SkiiCJGIuBHxI2hUh+CTgrksm0SMIXbvCWgvODvDAD7RCwBVmR0ecFUUHHxwSolaROIo4wlofBYmaMQ9AmwTE52e4QIgOOVIIYHABH+zgDaKTRhsghnMu4k9ROO+QpLGs9yitCWGANxlKhLDucMVfak1o1ya6jzgbFMF5vABKTo3pWDFkxyQrnvx5lhWTBcT6aCZDiDY5SOyMkM1RLxzrpmzs3WSwl1od8e1IG2zyRPJLRDHxiBK0CwRvMaL65/vcjgTE+1kVW5OuD9FUBodzDuct3tooSLbDdV2v+bx1A8+jomlxbsBX0aQFJNEwSszaO2dsHzs6analFM6mgQVIEzEohUpOjEsOk7V+EIQexEfNkgc4Py+ogf4YNNoAtrM2Wa1WcXCN6bXzgJOSzxGyXA1OGBlTBR9xoUSY4VjX2HmcskUrhapsbz5MHny1ZuoSaE3AeiDbVP+SxhhEKZBBsw2SPDgQa/hqhKfWsVvEJNkD1USBUiEguP4FdO/4RK2jg+vJ0uA9tm3jM5ylWx3TdR3edVETWAfi6Zar3qQ6F3Aua5xCI4eivTJ0rMf0bVdKkaB1j6WisA2UBIBXgkehRSLBnK7z6b6uMHe9RwrgNAls9abYJS/VqWFQRSlCELzvkrBV6Qaqx2gZp5UTsxSY0hSKCEZFP957nzzmdWWilFpz+MaCVo65Qave/cZ5vBJQGhuGGS5K90DSuQ5RUbolMrGEwoTmlxvM4jqTv8mEhhAwWiIIJ6A6j6ioPawXaiUYo3ob73HgOrTvmIlHG82t/df5zL/5Ha6++jXmW9t48SwWC8SCCi22vUKlGrSByeIMwdSEMOF4GVDaYAl0LnqWgkWpOrYxqEgB5BlqFEYMwYMxBi+KIJH+qEyDVypyZLqKmkUlYfOR+1dKYQGlTK8JozYKKGMIIQF2rSB00Tw6jzE1zmcqwxBswmdag0vksFb4QH/PzO3F/vaIGET0AP5lEIqoaV2KMiiCCoiuBh5UZE14nHM9Fst945yjqqo1YQOQP/jyV/vRViGqcZFB40RhWOdCes/BJfVb3vAU5jotZGOzmRsbnEd5R5eumdWGtm2pqgqFR7olRjp0OOaf/5MfY3Vwhbc9ci+qMljb8vxXX2b/5hFXrt3ghZcvs1rC93zvW3nrY/fhlyuWRytW7ph2FZAwQZsJXml0ZThaOpTawquGzmuCgCfNVtGgFYhC6wqjdOwTJZiqiVhJqTSACm0qfJpoqKhZlFIoiTAiasZonoKoXiv0psvUg7mWwSsXZaJgex+FEPDWo6vEBmRaTg+RDz36O5PEa/2exsvhMGIi8FcDlZKxYqnBekxbjHm+V6kpQwiDkGUP0iUzlKUyhgaqU/Y2m9EMysfHurCdjkuWh3MOjMYgKGtROILWtK1lxpKtCfzTf/i/8p43n2F32tIeX2Ey8/jQcnzjmNB6JAjHyxOcKIJfEWygw4IziNcsj0+wXaCeQnAzRFYEOlofqKo5baeiYGhF5ytWVrOymiANVk1AG7wIjZ5GjUFAVxVBFJooRKJNHARdERKe0lqDaIJSVFUFSZMIOmGuiJ1iTHIQzBIndV3SEEIvqFnIgvNJW8aJUIJwoPf+S9I0BNnoDQYl67HpIH17/EiRjMH/Jscvf6d/5KN/5WP9BYn9HiRRoZTgffQ6VYhMts7Yywe8d6fc5+Cl55fivTMPvt6o8iWNUji/QmmDCRq/OmbLnPA3f/Q/4uZrT/LvfOdjzNTL0L3KbG7pbEvw4GyLIvDpX/9t7rv/bqyzGDyqhWBXUduiaI80v/qvvsoD92+DXtETvE7hnBCcQ4kH12HEU5lApS2VCljXgnWEzuJ8h7MW6wLO2QgjnEUSF+WDT2y/i/o/RNbLuYgNcQHn4/mps7CdJRLJHUIMjDuX3FBCJHKTW9PZNv7tHRB6zjIORwqdedCSYFDq/ew4RY0Lztk4dlUVeTkRgheUKEJIseaktdxIY42xWKktS36tF7ichRFtuOs9CUkzCxKT68Oaqs1ciqhwKlMgwvaxhru9NouNErSHqg7grjFTl3np6U9ybuGoFHi7xNpjlkfHKIRwvEIjHB0vscfw1Oef5c1vvcTKHWOC0B0JwVuOj5d0nebXf+0bfPiPv5W2bWmmPmJAGzg67ghBODw4ZjKfxYlVLdA64CQQRONocN6w7KCjxkuNVxOCVJimxntL0zR0QSNoTF2hlIGkyVRVOgsGH2L4Dq0QNFrrCNaV9PSF6DjYoddOQpAhw6IE+BH8m14AtOhkpnXvkcaxUiCRUC6FRkxyFIJa00Rl4L3MOCk9yjFWy9eU2LsXMvAFJhvMotYa6XmqxJNRhJtOpfCMBcitNXxMW/RC5i21gpl6BX/1kzTGUs+nOBy+s9huReVaDg/2CdbRro7wzuJdQCy4E0dYLmkPOvZvWG5cv8WFuyd4DNad0HXCwU3NL//CM+zdDd/9PW/BuiOODi3Xr8Dv/e6rfNf3vAnRRzz7/HXuf9Ob2L+55At/cIU/+uG3Y6pA13WoZotbR5ajZaCZ7bLyNUFXiNGIbqJnVjWgNVpFwcngvzJNGkudTORg/jLBKiZdB6B0FAwAHQUVGUzjwKnpZK5VL6B5vLJAaJ3woCqEYjwuWlEmV+XrQwiJ3tkck854ssR3ZTQkYbLo5hpRKZNgXRCM8nif7KuY3s2OYHT93ATwCpu97i6P753/n4mlDl/n2mufYjG9zny+S2XmHB8fM5vNWC2P6Q6uUwm4lWV5eMjq6DhiC2/pTlbcer3l5muaz33uJV67doU/8wOPcXP/mJ2zEw4PDzm4WdHoBc3sCNUYOntCZRq+8fxlvDM897UrvOuJe2LnoTletngPi+05rbXEsW0wzZSTVWDlar707GXOX3oAXc9RtcKYGpRBm3rAW9qARMESEUxTExLeccH3n0eBE3TVpIEyAxkqQlBRy1VVRZcwdDwxeo29ICRhM2LWoIwxVRw7PVBPGbP54HpMGULi4NAxi8IYPGHNmywD4SXwz55q5tCUUhGTeR9i1kU01kiINl0ReR3vQYlOJF622yHRDKM4ZZoBMdIa+k9CyOSmISgLEtAogvJICMzbp/j6059gOl0y3Z4ynW2DmmKMSvHLwGzSEEJgtTqBzlJLzF/zImgz4/qrKz71id/h2pVD0IozzYzdvS2q2QmmWjCZGEQd89QXvs79j98VHZ12iV8pJs2Uuy7MqIjB8bYVjHFM6ynBHqCqQGcd4i22i+2pa2FrMac9vsbXnn2Gne1zINB2S5SK3KNzAaMEpUjYJ6BQKAEvgUpX0TtH8AlbuZDxVsacEZNVqo5EcSDl70WyO+O+qDQFQnSElIAyMVMjEtmglUKhIvErRA4uEb1GooefszgSqUeIASeQrMlMou/WTeo4nSoLoDz1lWdC/0XIIYlkMnEQBqI1En4x9KCU6rVYqTYzt3S7TFgJiqBaAgrjapS2TMINvvSb/4Dd80vuf+hudD2nrqYEDJN6yvHhId6t6Jb76OC4cfUKcxTt8QnHl5d4X1PPDjm+ZTFisJ3m5OSIn/mJz/BtH7jE2564yOHRiulWzUsvP8vDD76dw9UJioC08NzTN3jyt1/gPd96jloblquKzz/9GqpueOwtZ1g0LYEZq9WKoB2iHdZrRNWoahtlhK5zXL5muXzzmN2zlzDNNrqJFMl0OkeUJmhD3Uxj1ohSmKoiKD0EqLWCoHqTFvs0hYrQiDbJXJroCSoVQ/9aEaS4T/ZqlV4znSKCGINmiBYElbWkDLFaM2C93hwGWdNcY8tUClUZIBcR9A//yEc/1nsHQGb7Abx3SB+GiORoCB6tcthonagb1Nlp3JW9y96rkmT/Xcerz/wuV1/5TbZ2VrT2gPPn70ZXFUorOjvcv3Mt3ju0EqamQnzg8NoJDXOUaFpraRYVN67cZP/KNR599G4uXFiwe2aOayc0E5hvTdCTClM5QjAo5ZkuDI89vsMrL77GhbP38twL1zlz9gLPPH2ZS3cv2J5bvPJoE/DeINJGkOw9zlls16ElMJvWLGYTJlrR2RVt24KAS6+cwbPWJsYIxadQThpw7xEtMZkxkJh8n3rNE3M2Io8pKQs5jkHUZlrpPhSYx0GizkP1HmqE/UoNSaZKBKEQbEBCWEv1jtePrFZ2RPyQSZKzYUvCXYUQYtCY0yk7pT3vb6YUPthei+XIfkjZBLc7YvA2arjYNwqMJwj80A/9MA88cBGlLNuLCavlARIctu3QOqagzGYz6mpCPZnx1a8+i/eKbumQqefM2Qk//ZO/xD/76d9gUu2xtbjA5578Gk/+zpf5zU//AX4141f/5W+xNd9iMT+D0p7aCIu5IiiLlyVnL57lPe97lGW4xRefucHVy1/nu7/zHSwmQg4ltt0RGg2hQbyGEPBuRbAdoQPlO3bnmirsszNpmetj3NF17OqQbnVEuzyibZesTo5p22VkzTtLCA6XgvnBeVQe+JRV7JxNAuIJzuK6Fu8twXb4zsaUpADWtjHhEUcgxW1dh7dFrNZbbLDJAxxCTqHQPlmAxDvEO3zXplH0a8IDELzt0+3LUBOFsOu//KN/5WO6z2foHY5Ccw0xr7G6zA/uGyXrru3w+RBikiBAZNSlchCEN128wD1n90EfcrJcctfFu1gtW5pqCx+6yBvZDoIluJbt+RbGws2r11m5E9xR4DO/+Szf9d3v5Px9OwSz5In3vAUzPeaJ9z7OhXu2mGx5ts/PUU1NPa2RZY33Gt1oJrMFqjIogavXr3LfvXvcd985lseeF194hYODA/b2dphMFD5o2tUKo4XORkdIBIIVXIiT1doloV3R1BW1geWypXNdDNEksB3wUZsIET9pnfpeUgpPCsSXk11AlCR9FHPI4sOjjovJwilrNsFhIWbfRm2V0I/ETF7UMD5jMrU0g70nKoM26xl+71ITokYd82RKKeSpLz4dxkLTCwg+stX5oiINOmeTlhTFWMDiURK1vlDzMU9MtOHMtOHwGz9F2z6FdSfs7J5hMd9Bqe3+fkYJy6PrGA2HN28gqxWVaI73j/iVT3yaf+/7vg9TCyvjWa1WGGPoWqGuDYLF2QrnTwgYgoPja9exNrC7ewbrUlKhP6Q7cnT7t7h+xXL5yopr+1d46L4zVM2C9uQWrZuxXJ2wajv2r1U8941XePjhu9C1ZzLVBImhm6ae8fqVm2AaqskOKwedqnBmQd0sUKZGmxrTNGhTU9fxf6UUVBETaRXjgCXtkKMtw2cx2C4pFopWffgp/h+xmNLRkog2MQ6c45tojIlxWqUHOmVNSEYUh4j0nJoixm21junsQ7qR0HUdxpjNK86yFIcgPbE2PuLs8qfUY8mxlWnB/TkCQSzg0U7jbWD/1iGf/vSXqetLmGqP6eQiWp1FMceYcyi1Q2c1Rs8J3rC1vYtuJgSlodJ830e+hyN1zJFqWbZLREVhNjOfvE+FMoG6mjGt51SVZnH+HDvn97DSUc/mBF1hg6GaTDleNnzh95/nvnv2eO+3PMZzX3uZoC3z3S1uXlvyu7/9CrduOr7w2Vd4/PH7eO3lJaFrYo4XHS4s6VzLfD7H6DnLg31mylMFB+2S9uSI5fEhzra0bYuzLdZaOrta6+/xUrcsYHEQ8zkRqpDgSrAO7xxd12FzelMIeOfw3ia2wCfz7EAFOtfGfiqel39yIByIKWAh9F7kWKlEoR+cwSpNFpUb7wVaZ3Gsa6WcAhSZ5kFrBS8Q4mKTvEIod8x6mMmnBw8LQKJGVDiJYFaqmo99/J8j9cMcrSw3rl3FO+HG/gFB1YgsODxqMM1FpL4I5jyOXTw7mGoXqc5gZlNUXbMzndOYKapOK4Z8jFY4UVjfUdUKJ4GmqQiTCh9MFFbRVGbGdLLgzHyL93/bt/L5z3yV1dLy9vc+zmJngTaw2DGcPQtGOZ74lrNMmpYHHplx7ebrsUO9ZVrVeGepa8/OlueZr73Olcv7GH9C5W5hOku3srTLQ+zymG65ZLlc0q1abLfCtiu6rothPm8xCnQ2Uyp5hH2fewhx0YsPNjkTkdxWEgjWxp8UcrJ+RQgOFRTBRuGTEFOjCBkvr+eNlVrNe1s4eoogFUjk3xQ6JYE6ggyLg1TpGfYqdk2bDcKT1zX2h2RN5dYas4lwHcez0tP7e//W55/DbL2LyZlv59hu89JrV9na2mJ1tMR7x872Fp4apbcQtcd86yI3Diz11gUmeo/P/OqXWZh7kK2HWbJDM73ITtjjV37uV5B6wSRUNLOznBwuo/nVDfbgmGYxZTI3TM401Gd2sEFhZcpTz7zKhz7yvew+eJHf+sSX+eKTL9Ls7HHuTTOeeN99nL9nys2Da9SVZmdbc3Sro24EU6U1BLbDuxbvlnz7tz7Gb3zmFb709OtU6pDFZJ+JP2C1WrI6OaBrjyPZ3C7p2iW+XeFXK6xtgbj+oO2Wa1qkjC9DxnhxEtt21Xt61tpeGwnRscifRXC/OVN5TFO4pB3LnH7vbfL4hwXhkLm4wcT3KkcFwPlhxmwwkXda9HE7AFnOiE15ZPk4WK1oucRi6/u4cM+f59IDf5L99m4Ouyk21Cg1QVTMdujsEbZruffSm5AjjVQ173vvhzl49YRKO6qu4xf+8b+AvQv86b/2UbYuPMTq2HP5xdfY2dpmcuYiIsJvffLXmCKYzqKXjtop/s1v/DZP/tvP8eB7HkTtWrbPbKFm8MHv/nZ0pZhvb2GqKZNmzmQacYdged/778HEpAlqo6kbEyMR7ZLgb/EX/tz7+dxTB7z84jEn+wfMmyOUP0JwdKsTJFhWqyXL5UkMpAeHa7teILKg5NhlqQR6a+TiuRHbp2t6ZyQufnHO9avWx1Coz9fz61nHm8YvW6vKKIyWSMyrSMvEFVhDHFSVg13mNGmdOJdCyCptNmik07jhlGeyQajKI8fGnHiscRzrGTfsfTD9I5it76AND/LqtYrDpXDSOjyGne0zWGv5+N/7MZ5+7WW27p7zU//kH+FvWPY4x3NfeY3u66+yvHKZxq64cfUav/h//RKHK8vufJvJ3ffw/T/4Q0izRTXZQtoAYvmeP/7HOFnu844nHmWymKMXDR/5we/GVSc0kwXaNVRqznTa8Ohj99KuPO2yYrWMmKfWJnqTqyVKeYyyWH/CK89/lh/+oT/K+Tc9yKuvXedw/xbnZgLdMQRL2w6aqm1buq6j67qkcQZqYRAMWWPae4DuHeDTeVGg2m7ZC1omS711PV6TpKni893aGJZHGfzOjp/4gHjXK6lMY0QT7FEI+i//yEc/tpZZIeWyqhgeUjGiEHPcVUln5LBROKVix0I0/qw8ovcIyhvwJoatRCG+QlGxYpdq8QCeu1H1wwT9AKp+kOniLbz4jX3e8dj7af0JH/i+DxHqBc3OBR79Y+/kJ3/s/+Qd73onplpw9vxFPvTvfy8HL76COxTquaGZb/Ebv/47vOOD30mzdYb9gwPMouHxJx5Ca8Oy7fjs5z7Hg/fexy/+81/hoXvexC//7Ke5evkqb37zQxhV00w1zzz7Ai+9cMg9D+yBGILXWO8wlYqLSICt+RZueR21tc0Lrx5x3z1nObx+le3tGd51dJF5iNRCSreRTKJ6UrpV7G4lQsS6BY8p0qdI932eiFgkrtOUxKKpFCqKjElaTpfOyyvLRNTaWPdjq1VPtXgf8ZyIGiIHabWFS5yqiCBf+vIzfdJizojMNIYjSqrKoaaUfdGn9JKXsZ9eKv+HETRJnWbQKDQiMRefoDBicaJQSuOdQjR4cQS3Yt7U+GWLrhV2dch8WnHj6GvYw0OmWrE6eIbzO7vMxPLk7/8u/+h/+3/48Z/82/yN/+Jv8MCDU5QX/txf+CHmd1/kr/93f5OP/w9/mxuH1zg6eJWvff5zPPj4Wwm+4tnf/gwP3/8OMJ7PfuZLPPLme9CVcOX1o5jJcXKIszWYFc5qbt2K5GXrWtrWE8QzqaesVgJ1xdVjwysv3eLSuZa6njDf2uNWmBLMDPSEqplTVTVKVz21IUZTNZMRC6/W0n1CiGnbvrckGhdiGEqZRGWIQdcVksJVpq4Qid/pqolBeUBpc0rIMo0R/9e9t6u1jlm5MiRCaq37RTr6hz/6Vz6W06ezZIcQl3uRSFoh54iPGY8hCJ4D4Pnlx8J1OwHLM8+YaiCAcWnxBVjRaNEpOTKSkUprJGisA6VrvFY4N8cyQepdzPQc0+m9NLsP0+rzXF8G7nrgQX7g+z9MqIT3fOgJ6tk27/7gH+Ezv/Vv+eTP/wL3Ls7w0LvfinHCxbOXONi/yva0wh52fP5zT/HQo2/GywqlLHvnz7B/64AXXnyes+f2+Ozvf4UHH74LMZoQNFpNOTg6gaCYNAs++7uvcte9WxwdHnNy8zqX7tnhs198kUcefZCZ6rC2xTRzVp1HiOnbcb7rpLkimRpSJAARlE6ROegFTSWidpi8Cq10XOUWYvKjUjEQn++LCFrHSRyQYozXx2wghHPwO35fm4bO+Vjewlp0ZVL5h8hMKKWQL3zp6WBErYG8nOiWwxoQszKyQGS7TqIgTh+5oXfONVtrfDbF3mOUHnggXHHeiBpRoAqAWfJIUfO6OLMBjca7jkqtMFxDu2tMKse1l77IzkTwq5atrR3+1Sf+Je9563sJteeZF7/E2971Zr76uc/zyMNvoW0tYjpuXr6Gv2J54bkrvPjq6zzw6N0cuyO+8PtP8853P8anf+1pvuXdD+Cco+0C1y6/wtndS1y5ts/OxZrlMSwWd/Gp33uFxx+5i+1FR/AeXzUc+fNY2cFUDlNPqOopysSkxqqZRhih47oEo/IijoE0hchFIkJQIVIVAURXeASpDFpMWrYomCqm1k+n08hh6hqlDFp0Sh0vV2YlekpljSVokrwE1a8FKJ1AGFEYpVosuZGyFFQGp4OUb+Rzv+mjfFZPlyQvKGeA5vNOXevjYtoBtPq1e/mQ1jvi8BKjF85PsOEuTtS7uGkfYX7vt6F2H8Y2u3z843+H7/3+P8HuOy9x9bXX+en/45Nov8Xbv/393Dg4JAi0nWb7wkX2ZQkL+PxnX0W7CcpXvO/9T9BMFO/+1oeZzAJVE1ddzXf3uHpryed/7wC7rGm04eR4n+983+P8i196mrYT5tWCGk9lb+HkOPaDp/curbWxXAESa6v506QGodQlAAAgAElEQVRoPzZZc41Ye5GhKlN0KMBZS1VVffw6HyVL0DsCfdmFNImTYtCkjB1f0F4FcSt/8OWvhpK2WDNrZX2tgmTtwWWfYn07jbVJANfPHWuy7O1EPiZr10GDhjBMiHy/vkNGTxI0oiyiHEZqvJN+ca7zHXVdQ2jBHdLoW0zDywiHuAomLkAbsy3+0n/yUf6Xf/A/crx/DVktOTFx7cDh6ze49dIVKl+z6izWWMQHrl89BloOrrcc7J9w49gzqxVde8jk7BbSrei845WX9tm+/138wee+yAfe/SCV9lgz5bI9Q+crmukWpqoxddNn1mods2KlqmPIRqkeR5UKI0iCSDFYCcoQJGn1vHpKKYyp0Ok+ohVSTRDRVGlJXwihz84VkQQJopxUqqIv15VSx0uaK6cZ6b/8ox/9mKSgrWK93kLJX4zzhQbvMg5n+RPtejHk+UVT4tv6eTl3LQd/QakqpqdITIMJxYqoPi2mnxC3/+kLvQQNTtBKxwUuKgaHffB4FEFNcWGbVbhIK3eDOofIEjWp+NVf+yQ/8Mf/KP/0f/p7fPiDH6a6eBeL7XMxH26imM4atnbm/NInfpl3PP4g4i3T2RSZdsy2JhwvFb/6ay/yyL0Nq9UJ2jmWK0UdDGfO7dBUK+657y0cnwSUbsFbDAEnDcELOpkzpU1M5QkhrtDTFQJY51DJbEJRsFASQSspQVHp1CcpuTECjSIzNlBXVXT2EpYbswVKqX6hc66iFGVFkCAECSm5NeegpRT+H/2Rj34sV5HRUvBao8qIpXD1g/xNW8ryPqp3JHJee375/JycZeATxhJVCs/6jI3aMn+3HqVQElcQqaCTcIJP8TonsZyLAVSIsxCpCFIRqBF2sMbRHbzOlgq8973v5ZmvPY1aWbbPXGC6c4YVAicdCsU7nngc7wJ21WEmJg6Um3J8eMDbHjnHtPFMZjMOrk/41G9f5pE3zakmAToHrPiNz3yVS/fewwSLaTQnJ6D0BK8kLq4mgnOlNaJze0Fpjc01yBJvlflNpVPfqkgJlZ6poECnNZ9aD9crEx0OBCM5mSEJmJKe1jJrHGj8rl+ul7VpoktSmYJIS7Sp7kRf9IwwOJClyGRB85z+Evps2uEC338+CEBchV2uEVjDXVr12X4RdgzB12hGN0l4DNrnl/SpCFNesOyTplZeUfVJlIq2cxgjiIlgVqg5CYrJ6lEeeMdF5t3TtKuXeeDiNk/+wi+xt7vgpJ2zvbfHleuXUcbRLRV2FTB+wv6tE3zdEULH155/mUceeoggBrPs6NwR3/q2BZUBJ54QPI1qeeyRS1y9fEJzVqEqy/YkcOBWOBspCOc6nKuSZxlLqSoliPfUkwne+RiQzsrh9rTkKexdkrkD/VHwoT0ujlpLIz1vF+mPNCo+53ST+LMhCTKOqR7Sd/ub58GXmNVZLiK4HXv/xkfpJtMLZA8y02PX/i9TjIo46B2fIhGkegGvA60ELAFURfCG4A0EjVOgTaIEvEeLp8PjbeBQCcfsclO/E7P7R+imb+b1xR5Hi7Nsb5/nJ/723+cn/v5Ps3vvgywunmN+1zlkUXP+0nnapWVez3j7o/dxZltz6fwu3jb8zmf3eejCjMlUmCjDrGpoW899e4bnn3qOo9aA1xg5QIdbBG+xfXmrlFWRFvIMtWmjA9B1XZxQOuWsrcGKoV+iMNkR7KBftNILYVHRJ2u9Uj6yzDhCrLKkhyJ4QQaZ0j/60b/6MQmkStMyzIIQMQvQlxAipMo5PRQbAf4wwmKFYK1/vh7lF2I9CUnhiP7Fehc4f5YFdDCzt39WuhYVEyV7TyxmKSgT+XAdMj+YWhYEEwQxsaKNVgpRDSdtQ1C7vP1t97NVg59UfMv7v4PFSccnPvUrvO9D34VT8OM/8TO8/zu/lZ3ZLieHhxzvt5zZndBahwYunTG4cEhnV+hJTUBhu0BQgfN37fHqyysW24pJpTF0HLKFE0WjdCRU8bG0Qg81dOIPfcJRkbKgT2w0eBJcUJFri1GF1JcqYlVldG/y8vK5HqureJ4KKWNX0rI8AkFiJShjDM66fsxiXybMtjY8BY0gheRmWw+breMf9hi71XGMi5oMbsjqGP/+ZrTYpiOy40NCnfex/tZQ33r9CCk7wVob11sqg8gUJ/fizB6HByu0Mnzq9z7Df/CRP0OlFyx2L/Ff/ff/OTtbU9TZilAb7r3nbqSy/Ot//QUmC0VX3WK+O+eue/aY1jXWnWAqh+2W1A08+/xLxMpbChxo3xKcZ9nF5XkhwZmyH/JgZgsjvSAUJi8JWP6/L2fQT8ZoBktNlQVqE81U/i7LppbPzGyB8lLmKA1CADHAKQGUi43J3mevYoNa//kmj42CkriVcUM9sZy4hzXg+k0JWzB4Yo0Ln8hkpTXWOTprcd7H91brdVddit3mgiuiFZ2zoGpO5Dz78k7M/P04zvLX/87HuXjfw4STFX/rv/xv2T73IJ/81L9hsVNz7p5dfvYXPoXyFd//p7+dM3dt8+4PvpOLD59he2+bbtWBn4IXJlNB4Xj3E/eyPOhQTqiMYqGWVLSoVC2nCwoJkUMsecR+jaPW+JS1QdFnIU2s3owRc9RCwcwDPaDvxwDQRsUacayX7/SFpw/0lEU+Bp41X+B9vyoZUqE1PSyHK2+2HiQ/TZTeLoS0SYOt33O9BuvGOlqj+91J0MpSXyEEHNKTjnUdK+es2hYbxjVvVU82ZmdFmbh4Nugaq2uWLLA8xleevQxVhWxv8Wd/4E9hTMt/+IN/CV3tsnv2LB/9r/8sv/CLT7JqW/RkwklnmUy3eeWVQz75yddpTM3JyQoFVAbms2iquu6EEBwT6RB7gu3afiI4O1TOcYRTfZWFrdc2Qk8rjLXg+mIhs7Y/QObITrEKCa/lFfKe1D+sJzj2WvWprzwT8gclk6+UApcaXoSXxmBx0yDfafBLdVy+qPe5Jtn4WULfDwWtohg67nbHmCIOuN4kiAzpLZHoTIHhUD57KM0ZsWpan0qAYGmaCumuMZm8glYnsFzi8Ig/4eTokP3Xn8Wf3KB9bUnA8nP/77/iwx/6AN2y5fKrN/Gd5fDYEgKcnByz7BTHy0DXehbzCaqeYCZTri1r2noPM91FV1MqJZhpgzE1oiuMiaXbY1kBE4PfErW2RxNymapk2kwWADRiNKaqaZoGpxR1NUtCagiQqm+uF72zCYMhg5ksx3XsaMRcymLl7yZBKoUjhFRcpQf9I1BfpN1uEq48aBsFNRQLiPFr5+bnbtJu38yhVKwPFkSnZ8SZGxfXxiIowceKiGttYpj5Ubsp8BoVhJPVkq46y9HyYQ5PdmC2TfAGb/Ywi2327nkU2dpl7957ePXyPh/4ju9AtYYf/59/l1e+sY9Z1Fy4tGA2T9kWWpjPNbPZIr1gwHUdO3WgkbguT4e2T5H3FN5iDi8lnBmKtudQlMjw+/RC4CikWuu4EJkhf6zUYrkvs1Zd361mGM/S5CqKB5YDLzLUQy2/Gyci3u4YS3R/zyTQZcPKjiq1UxzYdSdgPOh3xGVSdHyBuUp6z8hgWvrM0XzPtMh2iN3FrNQVKywBE+qo5ZWguIhbEst2ckKjz1Av7uHMufvp/Ir7H36AN933ICKBRx+BR998P7t7O4kHi9UUVVAIht978gWMqdPuJSA4VGjXqlKTViflxEWtUmXHmHIxDHAhTNOmid/70AtXxJwmpgMpU4xbur4yQ8LESDh7HJdreSi1pvEGTrT4x4iKDLsPscS6xLKdPnEvOe03bi6QBY/0M3iJJWYbezvjIm29/cf1tTXyS0YtNmy9AkQ3Xkf2eqymx0cuAixlbDetdQwJdwVvcbYl5E0hlOCVjqDf6AE4hxALBOJiXrwoumBjANvXrJjQyhkq1SBS4xUE8Sg9QW1N2T6/zd/9u/+M6dzzXd/zHnbOLqi14ud/9kuETjg+0BwfOYTAt3/HJazvaFcxxqmUovaryJkpg0hAvKDRNKZKKdOpZolSaOJiXRcMPsRFMt4NmbGpSAZBa0RVMVUoGOpU8AXAS/S+dfI60VHrW+L9yqWSd+JN1yiMMY4KISWkFR6lLkjUTYM7HvQsTGVjyvPW3HAvPY0RA765uow5df5gGgYBuNPq9fLIkyR7neRS6irvORAXSAQcXbldCMTtbfqKkwJKYzsXyVIUzt7PsbuHk06zWq3QYvBhzu5dD9JNFH/jx/4i9dldFnfNmWwrMIEf/M8+yHRH8ztPvsLO2QXIkt/8zVcwE4XWkWFHPEp7jEhk+nXqQxXwklOeh3Z60THWqTVagdESC/kEQHRc85mIda0F0j1zYqOIMKnqGP2RyBUCp7RYVhrGmDWvcywjG1Fzab5yyCHTF/1AbdAkY5s8/vx2g772AmhslwoEi6QZ6tee3XfmyOxuOvoUvDD8AL02i9fmoiZpMUXCNPnvUkvnNvRpRVrFyIKH1js6v4uVs9R1BUGYb+0SZmep9y5ga8Nsa4/txQK/FCqneP3KC+zs7PCRP/tm5jPPZNLwgQ/eD8EwmUzibizB01RVb/7j4t6whskgMe5a0ZeEGI2pUqrPosg7qiilYgUnpfCyvmI9Z3gEhtq5m8b5dtAo99PaQpL8d/l/j9eKcE+5dC6fM66jke9R1pq9nRndBCwBnE0eUHFO6RGOX/ANebMNh2fwrAMpgJ47MD3DFm79cB291s0bXgVl8cbguYQTDcpA6NCVYbY4z3z7HKpSnKyO+fmf/1WqquL87gMc3fJsL7aQoKnUhPnMoPp1FmlnD98hkmqAJWHvyWU9FDiGpOFT2/OeClrrNIaC0iYF3BW6qtG5EmQqzjeMk17DXuWYleOcV1ONsX0uoqxC0YHjizNJ25ujVK6o67o105W1Xck4l0fYMEj5GAtISaVUKc0lW8ISrLrg+0zMNzrU6G/Vi0n2JYus2yD9SmnnHDYtEbNh0GoZZ4QQ+lXanoDz4Omwoebk5G46L7TO449vYswOu3t3001bZndt8+f+0z9FtVuzf+uYs+cWSLCI98ymFe1ylTYiU9hE7eSSXVFixrn9gzAhiirRFP0Od/G1eudAqVgkWZlqAPwpxywKVSyqF9L+AygTszM28KX5s2F/KHplkDet6FeQb/LU+uVPRb0sF4aS3qV9LpMaSzM2Jl/LY/zc8XnjwrdZWMdhp2/mGCdvl6Zz/axoNst2+WResuCV77fWV17FyIVY6sndHB5rTDVBTc/xMz/1M4Qwh9WC/cv77F+9SXATvvTMk8x3DD/+v3+eC3ftEWhBW3ww+JBMXxjwj0q1+Eth6CmhIgfMe4+pFJXS/XVlRW6tE+BXJv6QHbMqjnVBtpaB8zweVVX1MpEFfMxZ9hrxqa880xdc0aOwUS5SnAc5Z9Baa9ecgBLc5//HdMQY6JczIpuEdfa5qENKXEtYXpO/60NRWXjugP/Kw4vvvc/i03iPFNHsKRwf0CYF78NQ7VupLOgx9UhEMDqutBcsNTep1as4f8x0b8rx9QPCyevYG8/z8f/mJ/mLf/57UWK4fu2A2ihu7V/m+Ljl9asdR4c1UqdKlBhC1XDcPIhvtmmqmnq2FQdXSSrdrhKM0X0s0ZhYyj0ogVTYzpgKU0UNZuoGlMGYCpWEKzsEpGxbF7JZPp3RvGmSlxuW9dDqqa/EJXFrOMnfWRB6YcrBVTUsRNl0jE3yJpMKw1K7cje1sjxkXFC6jvXKFy4105rr/AZH2Z7h74EQXmtzyCGWVCyuyHHrwbWC0HXM6grlX0TXr9NogzBh1b7K8eVnOXz5JVa3bmHbuArreLXP0c2OV75xnVU7YdXB4XKF9cJkMsGFmnbvzTA9Q60VVTOP1MZk2q+sX7MsDlRVg8SMCZWsT1XXVM0s7jYiqtdIEbPF+2SnYDxWm7B3KSNjy9RbuLKzS49w3Pn5ovG5paeV/x8f5X3vZOLG4a3+5UuqY+QclEIfZD3Oumkt1SYzOe60okWnJ4ManCC35iDlPUJT9EQbrBMcc3BpIy3jqcw2k8VF9GzKP/ypf0nrPV4ZnNVUTcN0McXT8XP/4mkqM+PlF1/k1z/1ZZSZoFVFpSpMKjGlqxqdsJKSqLW0mOiZ53WWSqPrmOxoqmZNe9X1JGm+jM3WoY1SUTtmczh2Asb9NY5xZuwuX3z62V6T9RioWFiSj02eRV/L/w2E5400WNnYklsb3zdvqho/H8IdpSlemwhFk9Tos3Anq9rXvI17Fq21J4tt2lE4xwGVilpNAqBjAH512DJtWmbmWYxxqErAedrjGxxc+Sr7L73A6vAyWra5ef06rrPcut5x7cYxN/ZPqJo9gnMEr2nVHM69GZlsUTUNuqqpq7jARJtJ0Y8aJzlIHhfyEhSmrqiaOi6h1iaVgV/fNypW7F6nnjIGLrF3OWZjC1ZWxe6vywM71kbj2T0m20qAeSfvsTz3jsHsUfy0vPeQdqJP3WMcplqbGHJnYVq/xg8/sm4qs6MRs1KJaeepfJP1uTgJlB6q7Ryqrun8hKCmEBT/9rc+GTGLNshEmO5MEdni6KbguxYTFFvzKVoM//qTL/Hkk18AoAtCpxtM01A1TRSYuklaNSdxasRUSGVQVYVpGurZnLqZUs9mNNMZykyYTKbUTYOuq56K0lpTmWZNwMaxzbFXmY81S1KMVcbMIjJsRbim/kbUxFijQd6PXPd7Kpb3GWut8rNNajb/v8lcq15T5DAQxDoN65prrMXWhEkG71+dEjrP7X2FdUw2rmoUS3EqbM4OcS46RCHVxSfWhrB+TtN0vPMdb6OzMTz08ssvs1AKNNzcv8qinmG7I7Se0bWBD77/Pm6uWqwHTIWZbyOTCVUTTWVQEkuJJmAfRGG0IWhFbeqeogghYOpJNJemihUZkyklmz/ReOcxddWP1SbLMxamNSuThDGHrkr8ZjZ5fMK6/R1rtbGXVzZgfN6mclN3OsbAcfxy4/uuUQ0jTYiSNfMoYcBRWsqFKYNADe1PVaX7fsnvkPcnTzdMg5UjBFrHDcNQLT50qKDowpzW3qCSGUEcPjgefuBtXHvtefRii9nOVWTlODxc8uLLl6kmc+aLKWaxi0jABs18Zw81mWN0ncoJGETn1B4Tt98JgbqZYHLYKAmgUjquMZWofeP2N6W2Un30YDyOZf9mhyxPuNw3+fPxQuOedyultRcgFTMw8m9H6Lfby4OplFoPOt8BCJYP3qQVN3knZaPzy+fZkWtulbhh44xzo/KUqa1xm70Qt9rz8SeEWGAm0jZurTOzOS3Xf4YgBK968xk8eFXR+oDD4oLqbfXSTnGdQfQO3sfcr+eff55FPeF4ecDeuV0Olges/JJLly7yj//hV2mdcHh0jZOV5cjXmJ0LVKqJGcp1g25mVNMFZjKjmS8wzYytnT1m021MPUF0RTWZMJnOqOo67b9ZUdcRyFfGxGJ1KTbcl97sCdkho0KnJXNZVsrPyz7KtMXYQZAvPv1suB2WikufTueZlVvW9dqluEXWGuU15d9v5CiM7f9YgPNe4Vpvnnmb1P0m9S8BVN541CQQqxmSNf8Qh0APySLYDZj8v/Is1GVmk+t03T6hWzLVHb/36U8wnU9xJyu6WwcsD1cc3VJ846UlHZa26wjNBfbe9E7s9CymiWZQ11tIVaXgdFxh3hcKVhoxQ9JhxEV6bTOvngsDciWeN7I0Y8BfJjvkbOPSRJYKxYwHJQ9UCNEUjAfHRzqc+PU6PimPUtDKhp7yGEeCN8ZZYwETEQSDxxJLFqzfK3fAGDOUfFvkbjLNkTVk6rRUTyw/fyzkp2BB+c5l2yXuFxlwaCe0YZvG3sTjuHr5BhfnmnO75zhcHsW9kCpD1YQYlrItaIPSDWxdQM33mE3m+EkVwbuaERoT93GCSF9UcUVSTDqMba4T6dpXyqYA7aLXJ9wbTPyScB/jbYg5ZXk/pfF9TPlPaZYAxMVSATa4/jttUozqm9BEoRfIdXJv05F3sigH63ZB9zHIzDipDG+VnRFC6B2U/p6BHn92zibVn98z4rVxezfhTkJMifKSTGZ6pieF44KAGKydchDmaC5z5syESsNq6WiaOVZWHGvL0jk6gWbR4KzC1Wc586a3QbNDM5kSpnNU3dBojdJNBP86r44XRA2URMyqWE/ViY1e9xTfSLjW3vVO/TD6P+NmSBvd5wtv54qu3cx5kM3mZywI3vu09k9OzYDx+WWAFUjL0NZrlMZr031DjK3FRaqaENaJwFJDA2vqPYQhPdmzvinooL3cqYEYD45zLlU9XI88xBfLz5G4n7cPtG6brWobywFff+VVXFDs3zphd2tBt7xFo7cJ/hatgFrM2b3rccxkC+qa0Exo6gViNBgfeS5AZfCfNb0ZNJQu3p+RCds0JmPNNsbEY0yd+0BEek22yfqYsvNOmcZUpiDvCpcv7Dd6KgQ0/31KizCYzU2qdPzcsedYgssoaECR25bjdKe2RQ6n98gOIaxvoack7oqmcoCszPbVgFvr3HVoIemcmKGh0iZUwmmHxvkuZnGECe3JhNqcYW9Pc+NoRVMFutUBYjRHxx2trpHt8+xefAvObFM1E/R0gZpMqfWEZlLhtUerZoh6VGaI/YahKArQF1SJbZH0brfPAyyPTZ+vT8QhYSFnXLD2vKSwSu8sD0pPcKZUHzcqZDI2ISKSnbRT5wL9kqxsQsufPh06DDRE9mbKXKixZu2FJuWcDXtwJjddTrvW5VGmwETzNhy5PFVJ9JbClW8XQogLUPJSvlxqK+EfCdEhUsHjfECoefrpK/y1v/pxVNijW01YHhn29xX7dpdr7hxu6xF23/QOWr1HMDPMZIqua6pqTjU1eAnoaoKqVCwhZXSKUMSU6FwqgLX3uT03Wfbl+NikRPLnIcSwUe7n8Sb3a5My79w7jkuOMU15TqnJNpnAb+YYB7PHXiwUmRbFi44nQ3an1zRw1oQMdefXK0UbxgtUerPMEFgfBicPgjq17tN7j5boTSpiKSrRCnz8X6m4uNVyjIjjb330r1KFwMG15/hTf+JdfOXrN9i7cD93P/R2Wl/F7Q0TtaAmM+ZbC5rJArTG1CbFKg1eDZNp7LiVR9lvpzRM0W9vBGlKJTA+Shxsre37PNf9Vxkklg0aE6h5IPub3gGT3e643Wwpn1se5TMznirPLa/pEweL0FT5rH4f7ZwfF9YXPqwJs5wemJyNNtbE40qQa+8oDlEeUpFl8YL2Led297Crlgt7u3zxS89x3GrOXXyIzqfdXdICDlUp6rqmaibkJEOjm7SgQ9YC2vn54z4tOa/8nnCaUB/3+/g+4zT3cqJn+OH9sFtvdrD6lKPxA8ZAsBy09YZ98yx+vtc3c/Q4pkhMzB1V4qlx/KwEofkz58Oa1huD2TGtMZyXMlKLNod40dDGFE1wwRMQdIimFO0hRJ0X8Y+P9Ii1TNQKe3KTS+fPsFVrrt464D3v+046aiqlY8gsxMIzOvFflWlQVcyiEKP7aEw/CrcRsrGnXfbZWMA2Wa3xebm/yntlzJwx8fi+vadbNmwTZTAWtLFWGx/j6yGZRh82ZKJuvm4TMB2vVM6dkV88v3BuZ9ReZqMZyNfl705lEgTfl8vKNSfyT2k2yonQpaJ+KoAKAYLCpSiCEs2i3ueX/+nf599932PsqH1W+/u8631/glbP8LrCOocQEx4n0znVfIGZTFFVFYvU1U2Pu3LFr7I/sibeFFMsx6N897FQ5d85z7+ckKU8jI8y3NSvA00UU28uy2M8cGPzNFafm9T0+AVLb+d2Gm08e8b3L5+9aZ1ffsF8bh+C8uvhsDEuKe+d/97UJ+VMjhTK+vsFAYtFQgAPXmJ8UXuFEY9a3eT93/IIN1/9OlPVcnSy4sj6uGlacDEH3xi0qdHVDFPP6SsrmurUJCyzYsYWqMzBu12q+trub8X7byJd8zuXgjweq3x9Dk/l8621p8nYPEB38kSUUncMvXgBNdJaOQJwO1w2PsZap2zf7QT1tLqPiw2zoI077nbHpu9uR/Kemjz9zhwGpSB0Jyh7gxe/+kXk8CYHt1Ycrzwy2wJVE4ga15hYOFhMFcun6xqd0qlDCIhaz6Mvnzs2faWWGjt0Y+1Uvm8+v/Soy36/XT9vcrpgWCOixoB87IKWNy4blYPnOZCeg+g5Lz7/XVbWKYHyGx3l80szWGqc8e/TE0TiSncfaYdMb5RLSjZprfL5m7S2SOTXyjLnMddMcM7jguDF09ljGtOijl7AXr/C08/v89yrJ/zsp57i/OPvoa6m1KrBKAPBoKuY6zWbTTCVxMwJPdRVK7XXpslSUj1Aj2P7/u+5xtsv7CktxSYNX9Z4G4/B2FRns6nKk0II/bL0MgCeG3ja69ocluhVb+BUID1js/Fgjq/d1AG54aXp2iQUQ7sKbVvUUYttGbbwKWe+FDG9TULd3y4T6SH+6AA4RStCpyxzpQgyZzFdcOOZz/Hss1/nK89fRm9t85E//xGcE1A67dZrogZrGvR0hlQTTBW3ukF0v8hjPIDlxMrtHY9TWRCl1MSlxhn/XfZ5/rzrulN9cid5yDgaGDJjyxPH5mn89yawPFanpbncNFBlYzbNgPIoBWHcieX9x8dYgIcvBryWO2PYcMIOnbOBIth0v9xan6gKvGLVtcy05gPf8m6ee/5lPvvUc1y+eYjTmhNrmW4t8HQoE4WoqhtM1TBpFoiqEFNByp7w3p8qatIz/KM+2+SUlX23qY9LAc6hobIPgX6hbnmU2RyleR63pWf8ewlP5i+cTiFd79g7eJi3e8nxAJVaqfxdqvg7HbcznZvaWH4XY6q63+N7U3vL+4+feTuh9nRor9Cdog2OV559igcu3M0vfvobfOapyxyuKv7vn/sUb33Ph9i9+CCLrfNUky1oJmydPc/W7jlm29tUkwaVFtuGEIP7mV3P7SszhksBGk/ATWZtPBbjc8cwYYw/x+8/1mb5+vxjyhlaBqnfCA2vAqUAAAW1SURBVCCPtUs5iHEblNNgtGxU+SK3m4Xj6/JxuxjoJrc7/11SIPF6cM4Om1ptYLLL60uit38HQireQloeJ4gHJ46AcPXmTQ46y+e/9Cy3bu3j1fMsdneoFnNmPuC7FqUrFostquks7gKnYo7YePI3TXNqf/JyvMrIRu6P202g8aQef1/+HgvjJgcoP7eUnTLpcS1psRy820nu7YB7ef4pzzLcPnWn3BhsU0e80VHOsvGLb3qHYXYqIPQLh2/3LpuuXXt+gTl1ojWCxHw1xHN2pviP/+QP0B4f8o53P8HOfQ/ybX/suzg6OUGLYOoJ0+mMZj6LK7ploAlKsjgfd+KuSqxVCsO4bzZRF290jLXa/9fY1axYUkPhL7nV1S3TDgriz2YQmRHEx3AtvpVLV4ILwZfQjQ8iiDDMxtUsBodZ9NzqqhwXyUl9+Sq53QWXy/1JcnLOyflPwjDqAkzJK5dL0YL/UBOcZsUF3zvX9IQSgKVRVbnCmHWC5HVmgvQn1BPzjuSRGushThmvfo+1y2Deh8YKR5IhUUHAZgkL1lysuG6wOOP1u/f4+9U/+PKbr/HXq5f47vsfEKZrPL29xceffYGPPvkUNx8+xXT1AUKcGg+x3hJCkp/xwvP2d65G6TlXajc9ZiEr/jjueD7fFabK5enbltV6shUI5V4rFZ0BREgxykcE4/Y1+kubOCpBwvFzNEMedFxrxgzUQzKvVl7VPQNWIOggMcJ3g3M/I4PazPYqkpglY9pmxLBiW98jbhHPnr/Av2/+w0+//Ia3acZNuMOV3QM3T7JnevLQSmECr7cVKaxepEowrotTr5nhBXBU/QPVyt87L7gkPJ/PtRi0Mm5ICMHKHaV+xi5NIqWUj9surx5xeqqNJ8ESgDejsCPREJ+cjB5T6He9VcywaH5NmbJ9jrvQvcqWmZfVTQ+ulPIJQ1uKCHGGnRLWGBHWhD9//wOff/Utfvz5V9ydrrGuC+aba0xPbnEKHgMTTy+gpLBa6bHbje28uMJEVZfijx0Gh71nDvH8NQvAY/pdmynl/aoeZ+MS+LqDnFesitsRkXcdfNl+6tlrI0+lIiCNmfnSGA9LL6C9SeUY3eYwyUg1szNhZnuu7qpUiG4r5njKx4SernG+Xw41V4+RID2iK1N4gtrL0VU1juij4aARLGzHATnMwZtHct+lwICu0/HTiKZDrxjraUaouri9R20rM8s17ygaEkdGqgCG/Tu/oJP7vDQOMwqrmMM1PeVhNfAYY9gJ7nhogpzl4tN7BJwt+9hzQBOG6FVGjKRyz6FRonMqSHHh/+8xKEvHEX5HeFFnxD/GMBXVPdW2kRuNjEpGRCu2H/C8OpOtgKFVqTjFcuzv0WjXtr3+zPazw9yNbyTHgMFUajwUAtB2/lqWJVfyJj/SvByEMs1Y1rxfoR5UR324emN8qe3JTlePGf3VO7dVmavn1HA/rEYdLh57xMS5EHRnyG0zABHrmjDVcIMdjWY19HgF9Yx/JQAjxYFbY9No/81y+fIlNcrjXFp5PZWCRmom+I5wRfYoAb3/JzYILREyTNOc41jIgbOIUD0dMzTqhfvXgkIec393IzrC5HY3ZwaNEar9yG16QWpVqb2si/bDbfN7Pv8sw5N/m6Yp71ZynX5C3savNhl7Ko3qGxjVIwlUAZTPZsWjIsJWz9RaJI3qpUYIrePs6DrAdZRYrAoMfiGrM6pmJFi17f9CydFuzViaDlLYFZ6Mn5x8tyKNvQKVF5OevNOrvvCF4RJPTQp9HqIjACzLgqty75MXMPICMDNMnLCOMdbKSx+ECcUIUPGtBuRIvQVvbwDMiiMghmeHiXRyIztQvacKYwB6MbGRJ6bj13HzxTkNM2+rlZ1PWz6ZcCpxrVDuDqFuFS7Fr8LhCXtDQLK8PwFY5T9Hm0tNGqZbL6A7elSS64KZ57wnwSU1w+Bn/v4P1rHsSN14tkcAAAAASUVORK5CYII=\" y=\"-55.156736\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\">\n    <g id=\"xtick_1\">\n     <g id=\"line2d_1\">\n      <defs>\n       <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"mf0703fa143\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n      </defs>\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.501239\" xlink:href=\"#mf0703fa143\" y=\"141.156736\"/>\n      </g>\n     </g>\n     <g id=\"text_1\">\n      <!-- 0 -->\n      <defs>\n       <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n      </defs>\n      <g transform=\"translate(30.319989 155.755173)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_2\">\n     <g id=\"line2d_2\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"76.24894\" xlink:href=\"#mf0703fa143\" y=\"141.156736\"/>\n      </g>\n     </g>\n     <g id=\"text_2\">\n      <!-- 100 -->\n      <defs>\n       <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n      </defs>\n      <g transform=\"translate(66.70519 155.755173)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_3\">\n     <g id=\"line2d_3\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"118.996642\" xlink:href=\"#mf0703fa143\" y=\"141.156736\"/>\n      </g>\n     </g>\n     <g id=\"text_3\">\n      <!-- 200 -->\n      <defs>\n       <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n      </defs>\n      <g transform=\"translate(109.452892 155.755173)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_4\">\n     <g id=\"line2d_4\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"161.744344\" xlink:href=\"#mf0703fa143\" y=\"141.156736\"/>\n      </g>\n     </g>\n     <g id=\"text_4\">\n      <!-- 300 -->\n      <defs>\n       <path d=\"M 40.578125 39.3125 \nQ 47.65625 37.796875 51.625 33 \nQ 55.609375 28.21875 55.609375 21.1875 \nQ 55.609375 10.40625 48.1875 4.484375 \nQ 40.765625 -1.421875 27.09375 -1.421875 \nQ 22.515625 -1.421875 17.65625 -0.515625 \nQ 12.796875 0.390625 7.625 2.203125 \nL 7.625 11.71875 \nQ 11.71875 9.328125 16.59375 8.109375 \nQ 21.484375 6.890625 26.8125 6.890625 \nQ 36.078125 6.890625 40.9375 10.546875 \nQ 45.796875 14.203125 45.796875 21.1875 \nQ 45.796875 27.640625 41.28125 31.265625 \nQ 36.765625 34.90625 28.71875 34.90625 \nL 20.21875 34.90625 \nL 20.21875 43.015625 \nL 29.109375 43.015625 \nQ 36.375 43.015625 40.234375 45.921875 \nQ 44.09375 48.828125 44.09375 54.296875 \nQ 44.09375 59.90625 40.109375 62.90625 \nQ 36.140625 65.921875 28.71875 65.921875 \nQ 24.65625 65.921875 20.015625 65.03125 \nQ 15.375 64.15625 9.8125 62.3125 \nL 9.8125 71.09375 \nQ 15.4375 72.65625 20.34375 73.4375 \nQ 25.25 74.21875 29.59375 74.21875 \nQ 40.828125 74.21875 47.359375 69.109375 \nQ 53.90625 64.015625 53.90625 55.328125 \nQ 53.90625 49.265625 50.4375 45.09375 \nQ 46.96875 40.921875 40.578125 39.3125 \nz\n\" id=\"DejaVuSans-51\"/>\n      </defs>\n      <g transform=\"translate(152.200594 155.755173)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-51\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_2\">\n    <g id=\"ytick_1\">\n     <g id=\"line2d_5\">\n      <defs>\n       <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"m468a06e24e\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n      </defs>\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#m468a06e24e\" y=\"55.875071\"/>\n      </g>\n     </g>\n     <g id=\"text_5\">\n      <!-- 0 -->\n      <g transform=\"translate(19.925 59.67429)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_2\">\n     <g id=\"line2d_6\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#m468a06e24e\" y=\"77.248922\"/>\n      </g>\n     </g>\n     <g id=\"text_6\">\n      <!-- 50 -->\n      <defs>\n       <path d=\"M 10.796875 72.90625 \nL 49.515625 72.90625 \nL 49.515625 64.59375 \nL 19.828125 64.59375 \nL 19.828125 46.734375 \nQ 21.96875 47.46875 24.109375 47.828125 \nQ 26.265625 48.1875 28.421875 48.1875 \nQ 40.625 48.1875 47.75 41.5 \nQ 54.890625 34.8125 54.890625 23.390625 \nQ 54.890625 11.625 47.5625 5.09375 \nQ 40.234375 -1.421875 26.90625 -1.421875 \nQ 22.3125 -1.421875 17.546875 -0.640625 \nQ 12.796875 0.140625 7.71875 1.703125 \nL 7.71875 11.625 \nQ 12.109375 9.234375 16.796875 8.0625 \nQ 21.484375 6.890625 26.703125 6.890625 \nQ 35.15625 6.890625 40.078125 11.328125 \nQ 45.015625 15.765625 45.015625 23.390625 \nQ 45.015625 31 40.078125 35.4375 \nQ 35.15625 39.890625 26.703125 39.890625 \nQ 22.75 39.890625 18.8125 39.015625 \nQ 14.890625 38.140625 10.796875 36.28125 \nz\n\" id=\"DejaVuSans-53\"/>\n      </defs>\n      <g transform=\"translate(13.5625 81.04814)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-53\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_3\">\n     <g id=\"line2d_7\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#m468a06e24e\" y=\"98.622773\"/>\n      </g>\n     </g>\n     <g id=\"text_7\">\n      <!-- 100 -->\n      <g transform=\"translate(7.2 102.421991)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_4\">\n     <g id=\"line2d_8\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"33.2875\" xlink:href=\"#m468a06e24e\" y=\"119.996623\"/>\n      </g>\n     </g>\n     <g id=\"text_8\">\n      <!-- 150 -->\n      <g transform=\"translate(7.2 123.795842)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"patch_3\">\n    <path d=\"M 33.2875 141.156736 \nL 33.2875 55.661332 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_4\">\n    <path d=\"M 185.469318 141.156736 \nL 185.469318 55.661332 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_5\">\n    <path d=\"M 33.2875 141.156736 \nL 185.469318 141.156736 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_6\">\n    <path d=\"M 33.2875 55.661332 \nL 185.469318 55.661332 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_9\">\n    <!-- original image -->\n    <defs>\n     <path d=\"M 30.609375 48.390625 \nQ 23.390625 48.390625 19.1875 42.75 \nQ 14.984375 37.109375 14.984375 27.296875 \nQ 14.984375 17.484375 19.15625 11.84375 \nQ 23.34375 6.203125 30.609375 6.203125 \nQ 37.796875 6.203125 41.984375 11.859375 \nQ 46.1875 17.53125 46.1875 27.296875 \nQ 46.1875 37.015625 41.984375 42.703125 \nQ 37.796875 48.390625 30.609375 48.390625 \nz\nM 30.609375 56 \nQ 42.328125 56 49.015625 48.375 \nQ 55.71875 40.765625 55.71875 27.296875 \nQ 55.71875 13.875 49.015625 6.21875 \nQ 42.328125 -1.421875 30.609375 -1.421875 \nQ 18.84375 -1.421875 12.171875 6.21875 \nQ 5.515625 13.875 5.515625 27.296875 \nQ 5.515625 40.765625 12.171875 48.375 \nQ 18.84375 56 30.609375 56 \nz\n\" id=\"DejaVuSans-111\"/>\n     <path d=\"M 41.109375 46.296875 \nQ 39.59375 47.171875 37.8125 47.578125 \nQ 36.03125 48 33.890625 48 \nQ 26.265625 48 22.1875 43.046875 \nQ 18.109375 38.09375 18.109375 28.8125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 20.953125 51.171875 25.484375 53.578125 \nQ 30.03125 56 36.53125 56 \nQ 37.453125 56 38.578125 55.875 \nQ 39.703125 55.765625 41.0625 55.515625 \nz\n\" id=\"DejaVuSans-114\"/>\n     <path d=\"M 9.421875 54.6875 \nL 18.40625 54.6875 \nL 18.40625 0 \nL 9.421875 0 \nz\nM 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 64.59375 \nL 9.421875 64.59375 \nz\n\" id=\"DejaVuSans-105\"/>\n     <path d=\"M 45.40625 27.984375 \nQ 45.40625 37.75 41.375 43.109375 \nQ 37.359375 48.484375 30.078125 48.484375 \nQ 22.859375 48.484375 18.828125 43.109375 \nQ 14.796875 37.75 14.796875 27.984375 \nQ 14.796875 18.265625 18.828125 12.890625 \nQ 22.859375 7.515625 30.078125 7.515625 \nQ 37.359375 7.515625 41.375 12.890625 \nQ 45.40625 18.265625 45.40625 27.984375 \nz\nM 54.390625 6.78125 \nQ 54.390625 -7.171875 48.1875 -13.984375 \nQ 42 -20.796875 29.203125 -20.796875 \nQ 24.46875 -20.796875 20.265625 -20.09375 \nQ 16.0625 -19.390625 12.109375 -17.921875 \nL 12.109375 -9.1875 \nQ 16.0625 -11.328125 19.921875 -12.34375 \nQ 23.78125 -13.375 27.78125 -13.375 \nQ 36.625 -13.375 41.015625 -8.765625 \nQ 45.40625 -4.15625 45.40625 5.171875 \nL 45.40625 9.625 \nQ 42.625 4.78125 38.28125 2.390625 \nQ 33.9375 0 27.875 0 \nQ 17.828125 0 11.671875 7.65625 \nQ 5.515625 15.328125 5.515625 27.984375 \nQ 5.515625 40.671875 11.671875 48.328125 \nQ 17.828125 56 27.875 56 \nQ 33.9375 56 38.28125 53.609375 \nQ 42.625 51.21875 45.40625 46.390625 \nL 45.40625 54.6875 \nL 54.390625 54.6875 \nz\n\" id=\"DejaVuSans-103\"/>\n     <path d=\"M 54.890625 33.015625 \nL 54.890625 0 \nL 45.90625 0 \nL 45.90625 32.71875 \nQ 45.90625 40.484375 42.875 44.328125 \nQ 39.84375 48.1875 33.796875 48.1875 \nQ 26.515625 48.1875 22.3125 43.546875 \nQ 18.109375 38.921875 18.109375 30.90625 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 21.34375 51.125 25.703125 53.5625 \nQ 30.078125 56 35.796875 56 \nQ 45.21875 56 50.046875 50.171875 \nQ 54.890625 44.34375 54.890625 33.015625 \nz\n\" id=\"DejaVuSans-110\"/>\n     <path d=\"M 34.28125 27.484375 \nQ 23.390625 27.484375 19.1875 25 \nQ 14.984375 22.515625 14.984375 16.5 \nQ 14.984375 11.71875 18.140625 8.90625 \nQ 21.296875 6.109375 26.703125 6.109375 \nQ 34.1875 6.109375 38.703125 11.40625 \nQ 43.21875 16.703125 43.21875 25.484375 \nL 43.21875 27.484375 \nz\nM 52.203125 31.203125 \nL 52.203125 0 \nL 43.21875 0 \nL 43.21875 8.296875 \nQ 40.140625 3.328125 35.546875 0.953125 \nQ 30.953125 -1.421875 24.3125 -1.421875 \nQ 15.921875 -1.421875 10.953125 3.296875 \nQ 6 8.015625 6 15.921875 \nQ 6 25.140625 12.171875 29.828125 \nQ 18.359375 34.515625 30.609375 34.515625 \nL 43.21875 34.515625 \nL 43.21875 35.40625 \nQ 43.21875 41.609375 39.140625 45 \nQ 35.0625 48.390625 27.6875 48.390625 \nQ 23 48.390625 18.546875 47.265625 \nQ 14.109375 46.140625 10.015625 43.890625 \nL 10.015625 52.203125 \nQ 14.9375 54.109375 19.578125 55.046875 \nQ 24.21875 56 28.609375 56 \nQ 40.484375 56 46.34375 49.84375 \nQ 52.203125 43.703125 52.203125 31.203125 \nz\n\" id=\"DejaVuSans-97\"/>\n     <path d=\"M 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 0 \nL 9.421875 0 \nz\n\" id=\"DejaVuSans-108\"/>\n     <path id=\"DejaVuSans-32\"/>\n     <path d=\"M 52 44.1875 \nQ 55.375 50.25 60.0625 53.125 \nQ 64.75 56 71.09375 56 \nQ 79.640625 56 84.28125 50.015625 \nQ 88.921875 44.046875 88.921875 33.015625 \nL 88.921875 0 \nL 79.890625 0 \nL 79.890625 32.71875 \nQ 79.890625 40.578125 77.09375 44.375 \nQ 74.3125 48.1875 68.609375 48.1875 \nQ 61.625 48.1875 57.5625 43.546875 \nQ 53.515625 38.921875 53.515625 30.90625 \nL 53.515625 0 \nL 44.484375 0 \nL 44.484375 32.71875 \nQ 44.484375 40.625 41.703125 44.40625 \nQ 38.921875 48.1875 33.109375 48.1875 \nQ 26.21875 48.1875 22.15625 43.53125 \nQ 18.109375 38.875 18.109375 30.90625 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 21.1875 51.21875 25.484375 53.609375 \nQ 29.78125 56 35.6875 56 \nQ 41.65625 56 45.828125 52.96875 \nQ 50 49.953125 52 44.1875 \nz\n\" id=\"DejaVuSans-109\"/>\n     <path d=\"M 56.203125 29.59375 \nL 56.203125 25.203125 \nL 14.890625 25.203125 \nQ 15.484375 15.921875 20.484375 11.0625 \nQ 25.484375 6.203125 34.421875 6.203125 \nQ 39.59375 6.203125 44.453125 7.46875 \nQ 49.3125 8.734375 54.109375 11.28125 \nL 54.109375 2.78125 \nQ 49.265625 0.734375 44.1875 -0.34375 \nQ 39.109375 -1.421875 33.890625 -1.421875 \nQ 20.796875 -1.421875 13.15625 6.1875 \nQ 5.515625 13.8125 5.515625 26.8125 \nQ 5.515625 40.234375 12.765625 48.109375 \nQ 20.015625 56 32.328125 56 \nQ 43.359375 56 49.78125 48.890625 \nQ 56.203125 41.796875 56.203125 29.59375 \nz\nM 47.21875 32.234375 \nQ 47.125 39.59375 43.09375 43.984375 \nQ 39.0625 48.390625 32.421875 48.390625 \nQ 24.90625 48.390625 20.390625 44.140625 \nQ 15.875 39.890625 15.1875 32.171875 \nz\n\" id=\"DejaVuSans-101\"/>\n    </defs>\n    <g transform=\"translate(66.355597 49.661332)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-111\"/>\n     <use x=\"61.181641\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"102.294922\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"130.078125\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"193.554688\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"221.337891\" xlink:href=\"#DejaVuSans-110\"/>\n     <use x=\"284.716797\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"345.996094\" xlink:href=\"#DejaVuSans-108\"/>\n     <use x=\"373.779297\" xlink:href=\"#DejaVuSans-32\"/>\n     <use x=\"405.566406\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"433.349609\" xlink:href=\"#DejaVuSans-109\"/>\n     <use x=\"530.761719\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"592.041016\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"655.517578\" xlink:href=\"#DejaVuSans-101\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_2\">\n   <g id=\"patch_7\">\n    <path d=\"M 215.905682 174.499943 \nL 368.0875 174.499943 \nL 368.0875 22.318125 \nL 215.905682 22.318125 \nz\n\" style=\"fill:#ffffff;\"/>\n   </g>\n   <g clip-path=\"url(#pea659479d5)\">\n    <image height=\"153\" id=\"image4f71c92cff\" transform=\"scale(1 -1)translate(0 -153)\" width=\"153\" x=\"215.905682\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAJkAAACZCAYAAAA8XJi6AAAABHNCSVQICAgIfAhkiAAAIABJREFUeJzsvVmMZdl1pvetvfcZ7hRzjpVDzcWaWJzEoUWREtVUU6IkG+rB7RZgdDcM+0VqAwZsP/jFgA2/+tkG7G40/OC239pGA92tFpviLLJIFossVrHmrJwzMiJjuveec/beyw97nxsRSVpuqaJgwsiVCERExrnn3LvPOmv417/WFkB5IA/kAxTz//UbeCD//5cHSvZAPnB5oGQP5AOXB0r2QD5weaBkD+QDlwdK9kA+cHmgZA/kA5cHSvZAPnB5oGQP5AOXB0r2QD5weaBkD+QDlwdK9kA+cHmgZA/kA5cHSvZAPnB5oGQP5AOXB0r2QD5wcSdxkldeeQWioqoYCxLD4m+qxzmRqrr4PxEBVURB8t9ElYgiIsSoREnHeR8wYtM1jDk8b4gAxBjTuWNABFTS//VfAMGHdD0RYgzpeiKopmOF9H5UFTGH71VVsQhRQYxZXAsji3P00v/cv79jn3Uhh892VAUN6X3kzxpjPHb84hpRUUmfv/9MIIs1AYjC4ncJsjhPjHFxzP3vJ6Bo/rVf2/4aX/zt3/mLb/6/g5yIkokeodeGmDSGn1ewX/haDhUMIAIi6YPGGMGmDxtiRI0geqhQvYIJSblUlegDYgwIRO/xISsTWblVQYTgfb55BjRdPxIRBVSJ/ojyqBJFiIBRWSieUUGjHv+8x5QJlF6R0+cLIRxTRBGL5AdCRFCUGALW2sUx/XlVk5Llt4SILM69UOb8/gUlaoB8nOZ/i+tyqIDI0YcjK7wGFh/sfcqJKJmSFkjSL8fk2JPdLwSSDtP0m5JuBvmQvE4ghhhiulFHzh01ohrzwQoaQSFEj8aIxpBuWq/kWWFjtrCCELPyQaB/jKOm16RFvt+aZOWPYfGeQNGoiBEOL5VvJApItsqLhUo/qy6Oh4hCtky6sO7Bh3TeqMcUtV+nvLhEjlg6XVwGjRExh8orIgsF17zqgsl6JGi2jMqhNVP9JVIyNGJE0hNhDOSbmT5MrzSHC6iHD/9ivaL2TxhpkWM8ZuGsEWL0EAWNHkTRkM4VfQdACB0gaPDppsV8C/ON0nwNJS40WYVsjWTxPkSS21aSC+s1P72XpDgGgyJECcRgFtbhmOUyvZU5XCpjUhiACtmIpuNiWkOF9BlRJGSFsEIIvRIaNOrCXYrJ7xvSObOF+jnL1T/s0rvo/EmiHrOIQFp7Y+43yn9lORElM7BwR6pgexVamPj7YhI5XPXD+CMuXGcIASHdEIISNYIokuM+DQElJosSIzH4pJjBJ8WMkRACGpI2H8Yv6W+L+EMPYzfNprX/bnqLKjkc6GM1MagoqvlplwhY+kdKUayxRE0WbGG7F7HRobIeGiUhxAiSYiaJ/fFK0IgVu3DzC7faW8ygybWqohrzdfuVPC6alSuFJIexGrCI13qFE46v2/uRk7FkKIjByGFMcPRvZrGYxwP/FNekGyzxMDbrw1ONESFCDCghKVSMBN+lBQ2BGLJlyooVQ0A0KSoky7r4mcN4rneNkeQ+OfI3OeKGFDAp5gaRhbXqlQRRVLt8YwxRFKJPrkYiGANqDuMePRpCJCXWkM4aYsCKAQwxpofMoMQYMNkl60IZDxOKlMT0FuvI0keOxGzxMCzJ6yKSH7Q+Hj3y4hiTwp6EnEzgL7KwZMlIJXcUY0TMcRMe6RODmOMeMBEifXaYFyX6pBwaQSPqO0L0xBDoug7VFFOFECAqISaX6b3H9MlBJAfSkagpJjumUP37z1/JsujCeqEpW8vPOGqSAujRz50VL+qhteozxUXWJ6Carrx4Te8a87FRUlKDMYgmi2WtTS7byMICJqXyC2sl0n+CJLp4oCVZ3YVXOVQwhPQwyqFLvD/r779OQk4oJjueVRkMkQQlGDkSI6iSAiUPgASPCTmeizFlNCqo70AiJmZ36D1d16ZYKwToOogB0Q5il8xMCBgB45O18zHigxIjCBYffL75SYl9SO/BiEnB/jHl6x+MtOCBFPuoMUeC4f4mC0aEgCTYIL0oKXeObayx6XPlNVocB2henwhY61LWG5NyhqCAQdQQNGLE0MUWEcE5lxXu8DYcV4zs+lWSpSf/LGCtTWtx5EFTexzuEJFjkMf7kZOJySRZkKIokWiIscMYm9PgbOINxNBiNIAGLJH93TvQzJnPWmwB+7vb3N3c5o1XXgbtsjtzyVVZKIoKCYHl0YQY9lletoh6nCmSMplAWQ5QUxCNQ7UAKWh9wrhUhEjKsqIYjLiMjwUQk+EMwUiKqYyYw2wsPTGopLjMkhRHJClflGRxFCWqYl1BwrCAYHO2LIjYZK1scnkxalKY/EAtMCrvs6WzC+WJ2WMYkfR31ayk9licRk4GUgIm2dUqxlgEIQS/yCAXihkODYUzJocwv0TuUklPlvoOtRaxQtSAFQX1SGwQ32HDlB9869/w3ts/5c1XXuLLX/p1QjvFGEc0geADtnWU7TvcvbtN4Qbc2dzi7r0dQhSauVIPlD/8D3+T0im+mUE0tE2H+I42tjRR8F4RrRFjMaZIFsQYxFmaNiLiiLGiUYuxBV4zJiXps7BQLrNQImMdMSrWOqy12YXmJ90YrC2SBTPJAsTOJmhCwVmLsQ4Rcxjb5QTC2oLgk3WypsjvQ+htjEg4ZgHjEYvZZ+sxY1pi0+3UcBwgTvGdIQSfrLSYBTi7cJEmxXZGDN77HLP9ErnLIILESFW4tGAohgB+xu7mLd565UWuvfc6ywPDj374Hf7w73yJTz89wegBrcxom5bQBXwI0AmPPjTg6cdPoero/EMLzKwoLUYC6JTYtNB1xAASIoQWqwGREmcsEmYZ/gafw/vQGVy0OFfj4wxaJZoCKBbKpeJQMSCWiElWQQxiHGDREAl9dpxdijEG79tkCcVgrcPneC5ZIIdYg/YuyJgM+QgaEnisCtGGHMPaZFUko4hyBEoRQ+zBYGMwJmW2URVRv8DsxJiU3OTY7ViFQDTHfOn2J6U1/Z8TpHMkRnu/cjKWLERKMRgfKMOcrbvXePO1l/jOV/8Fjzy0yiefv8Sjz5T4Zp/nH34eE65RF4FmPmf/3hbbm1tcunAZJdIR6GwL2hGDYmlzEC60046AQTuXFiK2tA34NoGjRZViIA0RkRYIJMAUQlSqYoRXjzYt1giuUBSHV4dGwUehDQ4fLBhHUAfGocam82JwpkJsUoAIiLXJImAQkqsNxmKMW0AlMSuDGEtI0X+KVY3BFo4QUkheFCVGbLI0AiI2KWNW9pgzWGNthl4EFY+IzQmLQIY/omaQOyt224aklNYsqgVRE2wUFQgpljVyaKOj/hJBGLV4Cu24/vbrXHn9B7z66nc5tVrxhc88ykOnx8TmDtZ4ioFHjdD5VCfs2o5Zc8BwXNC2c27dvIv3gXOXT+F9lxY8JNzI+0DsmnQDQlpY3waafctbb95heXXA+YsVqvMEqNKXkgSNAmro2g40xUOSUqzk1knWxIrFGqWjI0iBeo9Gg8YCFQtiCBLQIMm3ugKjShDBGNenDuAiIXqkd7fWpGqDHLo5sRZVIcRsyaLiSXGgMfbQsmYFR80hTBLCQtEgudTeheoRBTPWLGI1kZx05VKYmoRNGmNQ7w9rnznBCF5z3Pj+5USUzPl3ufLWD7hz7S1WhvDFzz/K2vIQifuEbg9Vj48tVeFo5h02Z29X3rnCY49epjCGK2/e4vXXblBUkctPnEMlELoWxaMhWYjKObq2S9lrUKJ3dE3H0tKAwcARQ8S69BQaEfoH0aRgi6gBkZjrkjbHWCbVRQlYGxETsEXK5kQtiMN7jw8GFYuKRYwjkm5+0JSVROlw1oBNlYgoBiEj514Rk8BAMSlIt9Ym6EW7FM+qEoOC2IyFWZCQ3KmzKbhHckKVYd/sjlOpKYEVqW6bgV7pC9+S46+UhBmTrJjS11INMerCZSbMzCwSt/etHydxkt1bf8q5lchDKyMKZ4ixIfo9iB5fClKUaCxouw5XlUx3d5mMhjz99CUSFGq5cOk84/GEolREGwrTYYuYmBPWQXYpVVXS+UDbtty4PuPq9R1eeOEhxFj2dzzDscUVCSvDpPgi+BaNhpvXttnZ8Tz25DlUp/jQUlRDOm/xPjAeD1KwngP8UVGh0RMLwUdDF2HeKmocQgHRI1Ika2NdgkwkuVCkyAG+gFiMTUopMWKMpT2CSXntUXxL0ABGEOMy8CtINOm1WcmMMQQ1SF9ZMIJGlxTNmByXHbpOzdYUNalcZY58157VkhICMSlWTFWWk9COE1KylXHEiSFKBQQKCmJhiN6gbcKiQkhpfTc7oBiWqFNslZDt6FtsVbJ+ekLwM0IXceLoYkfbRK5fvcFDF85y/fom58+foizT4q9tlKydOkM9dLz71h3efuOA5184SzVsWZqMQAJBO4wRgldiMFgxzPY9g4HiXMTKHKlKqsoQQwPqmO7PKKsBw3GRXA6KlxbnDAah8w2t7wg+oFKkSmZRpxtpDIZEnxGxyWKJElBMtIhJSQgZo3LOQV8rXBToemQ/KSiLUhrp55jdobMYcTnD8Om1qikURZIlNn38qKnGbAzkWCxdA2IMObNNwLXJ1vZkwv4TIi0OhkOKyRA7cKgzSFGj1mFsQV0PMEZwBqwkxL+oK5oYoHTgDFIYTA1SRlQi19+7TXsg+Kng5zXDapW9ezMuPrSBJcUsZWFZWStZXi6IXeTmdc90v8NgeflHt7FFkTAtG1MRm8j2TuSddw6YTltMYXFOQFpuXL+Bhjkxdhzs7fPD79/g+999i9n+FN80BD/Dmo6ClskA6iIwcB0m7rO3fY3StBBmmNChvsN3LWQ8MPiWGDokBgwRNKDBo8HnArXHe0/XdQSfCvvqAzGkiodGnwgBRJBUJYkxJGqT98lbhJYQ20QQiCGV4dSnr+jzsR1oikGD71KMGAMSU004qkcJxOhzmSoQ/cm4y1SFfZ9y98f/Jd4HRqNRLvkoMXbEZko7m2KJxC4tXjObEb0ndB2VK/DBpyAf6OYtJlquvb7Pjfe2WVlZ58Xvv8PWzg6/+ZvPsbbsaWYzRktjAg1td0DbCM3csrPZUlU1RdEwmpSYuiD4hqie2WwOWrCz1eJ9YjTcubPHE0+sI5mvFmOKh9ou4IMSgmKsYTQZEGLEugR6apQEtFrHvFG6aGi8cGtzSqRgMFnFFiO8JE5YUVQZtrBAwtuMsQvUnUUWms7bY1O2cBhrk6XPJabkJuPhayG9nwxFYBPADD36n5KDRVJAxto0ufQ+Noya+HKWHuVPbjkCf+cf/KfvVz1Oxl3GHDuEkEy8sQbfdIh11MMh8/29jBdB6Uo6nzIdSQhDypRixJUVza7na3/2Eu1BpCpv8PaVGeWgYGenJczmvPfeNZ77yAXqscU6Qy0lBuHm/A7jUUS1oGk96xsjmlnEe2VpNOLgYMawdsRoCCEyfngVozYxLHL2KRhKFxEbKaMgGlA/B5SuAysOaxy+82hrcLZOvqAQTq2N2Dto2Lz1Dsur5yiqIQL4OE9ArE0Jg+TEVDUpt8tsX4xBNZfrJRX1Uxm+z0g5Ej8dgq1JKTLjThMIhCZFEdOzDhJ8ArmmLyaRP/WQVSzGJsCnZ5pkrO0k5ESUzBY1ZWHouhYksSjSQkUcQlGUtLMZxkDrG4yF0EaigRCUtvOUZYE4A85RVxPu3d5mY33C+TOOmW+JbeD23QOG9RIqgaIyuDikbQ0FgcefPkfbdHzrz95jZc2wfmkJUxgqWxAbj8Gws7UP4hiNBgQ/xziLb1oilt2DjsIW2FKxTrBSYpmjsYWMtIfQJdcjAlqhocUVLgXLheDGhmE55PbmdWK1jNqK4WSZEAMaDNYVqHocVaIliSPpV4ImVEgWTzQF+2IwRnO9NT3AlpSJkks+XegWdUxVyefLuC0JGglEHJrhn5RRSyYzpDhP6FNxjWSKd4oDT0JOhoVhLFFhMB7ju5jofNpgCvC+QVxFORTmBwcMxiPm+1O27m1zevkU07sHhM5Srxt8OKAqBvy1L1yAcAFLxe5eh4+ezZt7vPLaLZaWlKc+/BGC97iiIGpDOSySed+b85nfuMjy2hrWGezYMt0/oB6PuXZzl909y7tvb/Hss+dYXimI3nP39h62nPDKa9vUg4LhUsna+oTRuGPkAkYcqiWVWoJ6Ij4Fx7YjBEukAGNxRnGVZViXDCrDvBN2dnfYubtHWQ+xboCWQ8Q4tAwZ/yrQItcPg8EWLGAOkzUgkAramoHUo/z/vqei/1n9IV09hSxhAUukgpLFGIuPbU4ILNKzXkzPvMi105NQjCwnVLsM2YdH5k2LEcV3DcO6Qgn40KYn1KYSiHGGU6c36PY63n39Jm+9scWXf/9XcEWFKmycnmRma8F4eYSgLA0rtFNcEfBhxrAYEKOydXeXoi44fXZMNS4YUDEYO2a+gSAUZUmIgbVTS3Rtw7TZpx5GtramxM5w7twZbtyZE2IBpuL6tQO277V8+MOnUZmDjUhm2SZ6UR/IdqRqgqTmFZMgBbVCXRmKQqiKIds7c5pueshUEUcUJRoLJoABZ1IFI0IuS2mCbSAzPDIuhi5qo72k3DezJno3lwk+qeaZnG6i8uT4JGexSMxKmDLRnlIeY+SQsfb+5YRYGIqYiPcxuQ9VYiwyayGl9TFGrHN0zZS6rrl9d4uRmyDAjWublGaAxgQkvnN9kwsXziMId25u0uxPWV/Z4OKFFaq6YGniKArDfOZZXTqFLSNdN6coHPVgmNypKKYs6QyErmG8MgSB9VNnWFla5icvvclsz2PtaebNlIsXz+NKuH59l/k8ELqIqRPJOkqHWJOoR2pR7elBPU07JmwwGNQnsoCzBbZ0mJWag1nOGmnwdPi5B1dCUdA1SrQl1rqEyps+qM/KlLlxJisZkmCf41ScTKLkCPQBYHtmRq9YumDgGk0JQMLdUlUkJh4BZDcbT0jNTsZdkp7GTgPWGoxCXY6Zz/cBQ1mP8M2Ud29e4dK580jrGY9W6A7mPPvxR/nwR59ktjvlm9/4Ic8/9xTf+Mo7/O2/+zT1ANRPeetnV+DShJdefp2VlSE+NHzu85/i9tUbvPzK67zwice4sL4MhUGspelmFDZiJeBqy1wsrlRm88jS6jKlNXz0Ew+zv9Nwd7vl5dfuYN0dzp0e8MmPXeLWrU0GJQxdSeMDzhXMuz1EDE5GeA+qidaUFiBCbPJyGmIQxAkhtpRFia2VtmuxTugU5m1HG+Z0nUWKAbGoibZAvcVm5YuSYQ4RiqLIlIPEdDPWZiasYG1x2DGV+XsAfeNOX1ZKrrPn8odESfIxW9O+oYRURhNDNKnKchJyIumDYAgBrBisgWY+59atW7jMPU8f0PLYY09kKAMMjm9+69sEUYpBxdLSEqfXlymkZrrfYkxETOTcpRXWztbMwh0+82tPsXFugBu0VENlvBI5d2nM+QsbYA3VYIgtDEVRYqnxTUQDDAY1VV2zsr5GPRxiywo3dFTjknpUUBRQV3D+3Ap1Cc20pWsU3xp2dw4IHuq6xqBYI1hjcWIhBjrfplKNGkQDRlN/QvCpY0qDT+oRZnTNLrXxFNIyLKCUBvEz4vyAbn6Ahhbv57TdnK5rieoJsaP1DSF6gm8T7pa0HEjNMyZnpqoJ5+r5Y8TEHF70YR4hNcYYMTa52h6PQ9P3GDoIftGg837lZLLL3G0TUUJoKAphNCxxVoiFoZnPsALz6Yy6rvB+RtTA/qwk0HJ36xYjs8w7797lxz9+g09++jJq5khZYyXyqd/4BA64fuM6j565xNPlI4xXKszwFG65oloqMKUjKEQjVK6mazzNzFOPEmxgjFLWKQvzzRxX1kTTIablVz97mvk8cGq9Zn9bcQ6uX91i49nTzOaeatgwHtUUYmi90jQdYhqcc5iYykmK6ftAEoiZKwUhF5+dEbquY7q3QzlYogsNg8Iy7eZoCIkdQsQUVVIgJ3RtcoulEbz3hw0jMSZca6EwfRaYKD3hSFZ4zLJxyJ49ZCpD7pRZkDON6WnkJ6EdJ6Rk3k9RNRgLVenwbcdgKOzs3WZ/f4f1lWUInqqKGJ3T6T6TtYrf/fc+jrOGeeEY4PiDv/dptrd2GJ8aUA4rgljUl4hNgOP5yQXaLtLO95maljAsuHz2MZp2RtM1uHKYGkralsHSgG9994dcuHiBJz/0CF3o8DEQtcUUFephZWODtfXI+tpdxBbMDzpuXttk7j1xCh1zHnl0I9Uh2xYRqMqCOOyYzSLet3jv2N9RsB2uSHFPWaXkTXOsA4k/VpUVXdfRTA/wCmU1YFAUtN4jMSSmiXYE7yjKMZgCYy1BhCgd1jmcU7CKaEj4V889y3Rxm5Mr1ZhYLPke9dniQtk4rngJ8c8xGgm767G19ysnlF2CK2xq2EiJGKHrKMuCtZWVVBOMnqadUwiICwSU4WRAM22Yt3PuHexz/vxZhqbGjQq8RGxpERRXONoQUGtwrqAcOVBoGiUYh61r6jKRD62CV8N0vs/zH3+GwWCYYICigFgStSZqg3EN0Rm08ZRlxdbWFO0Mly+fouk6Tp2pWVoZpfEI1iVgMwZm80DbKFU5pO06DvY8O9uG0bJlfz/Rk4rBnNXVGkMKE4KGVHQ3BWWVst2bt+6BzDl9/jQlEWsM89DgNSaoRB1SKBpdKkWaxJQIOVO06hLPLoO01rnE0czMjMQbO9IZZn5xY4jRnMGKZqsXF32oJ0QnO6nAf4gPJtNnHMZ41LYQWsR2KBboGA4r2tkUKcB3Hb5tCQTGp4YsnbbM/IxybUjnU1zR+RYxqW3fGFDnCW1iSMQQqYcDVFucFEQKrHEJTkFxxSqD5eUEoBIQLGU1pOlaCgy+E6ra0QbD3a09vvX1K4wrx2c+/TSf+MhF6lHFbDrjnStvcf7SWQbDAjpDe8/z45c2CbHlwsUVblzfZetO5IVPXuDevZbp/oyVtRHrywYjkSAeSP2ZAUWioywrLpw/S9MJ7715k42NAcPRkAqHqE88t3aa+klNgQs1tnBEk91kP/dDFUygkCrVPcVQmJK+K+koTnaswTcrnsneMlmtIxmqRshl/pOQE3KXEbEmPU3R4WxJjA6VAugQV9F0+zgrBI0gJZgWYx1tewDBYGqHdREfFVeWSAg45/K4C6ULbeKqS18KiigxdRBJprvkFD1oTFUG47FFhQkR3wVsUWIy4c/4xDaoKsPKZJmHzp5hbWnEvc199ma7XH7iHNHC6pkV6lGN0YCJBh8bqjo94rNpw9r6EEugsB2raxZrA5Pl3DiSOBsJlTKGEBMfvygUTIJ72nbOnU3PSnCMlyyFSQ9U5zsUl6ygi2jXYp1BWwGXKgWxH5EQoXAOsY4Y/KIn4OjoApPLAIsm5SMZZd9RTh+nCWnEwy9TTBZVE0M0hAQ2RgtUuKJGNBC0TZiRKK4ucBoJXYeXKeNyAprKGFE8ItDM5hiT+FFGDJ4uNXK0ARcNYnLTWiTRmRUkz37Q1HCEkVRkJipOymRVNGDKAmPAtD53Zzuq0vLsh84xP2h4+aWf0YSOS09eYLg0oh4P8F3A0KAaWV4b8/hTlq6dMxwMCUE5d9YgNjCe1KysF+zvtezsTVleGaUgWiOGpGQi4Lt5Yr2q8uSTZ/nad94jmhokMhgVOJuUogmpz9P7NuNXFis2dRRmcqKowUhI2X1PwTYGNQbRxNwgrxULSGLB4V3QsM1hS3VCQyTySzULw3ctDkORuevJzEa2tu6xvLyMMSWucGgIVHUFXcN8vkNQS1UPuPrue5xeWuPm9U3EKg89+jiuqgCha/aoRbExcLC/zTf/9Ot85Nc+wXBlAkEoSYTBVgMjZ/Gayj4ijnZ/L1m8QY2xBkweQiIGOx4Qpy2CMGsNL774NsYIl557nAuPnWM4Mrz30+u8+8ZVVjeWefjZc5g4R+2U4cSxvy+ENjLdj9y+s8vySs3S8pCRM8z3I2I6KieJrk1yXc4mZN/nYTHGWurC8LlPP8lLP71BG4V694DV1ZLxkmJcZN4FOj9EraOLKea1ZcR2idVqjElgOJE+vNd+MIwxua6ZXaQENKYy4P2jrQ7b43plOxGCDnBCStbqiOjBx0hdKrv7O4yHI4ajEU3rqcsKDYGisOze22Z5MKR0Ff/T//hPOb26zuc//xmMFvyr//MHWLvPP/jjDyWGgFFqV1CJo1Vl6cISn/m9Ndy4YjAYsHdrCz/bR12krCu2NjdZOnMKEUMZDZVX2rajCx31cMT+zgGuLBgtLRMV5tHwyis/o9003DuY82tf+AynLg+xpVIay2uvvcnu9ox6UmKcoTAFmBo/99SxokN49b0rqHesW0fqiI+Mx0pRTiBz9n0/dUjjgi1hbD9Jp6UsLOtrNW9dPeChc2Nu39mlLCuqOjAoOrr5LiIjonHEmOqcIhaJSrA2NT6rw+Xr9ZZecyf6gqnRD3rhkNERc+E9Wa+fhztOQk4m8C8fpgszQtsQMAxH66lOphFjMsmOwHw+ZzQcMptOGQwG/MO//x9R4DAliFr+7t/797ny+lu0+3OcWKqqZOfmJq/84FVMOeCZT7/AaGONThRxNRtnznLnnbfopg2+TYXl1ivVcAl/sMfNazd5+Scv8xu/9QWswvryCl2ITO/tMhou41zBras3mW4qDz9+GTuxVGsFzihhGpis1nShYe3cMqawiESCt7jaYuYB6wKXL21wsD/HWGjmLVVtGY0LQkyxqskovBHLwe4MYxzOFYQYUmBugDjj0oVlvvfDmxTFgAvnT7F1d4fliWe4NGBYOrxJgCxiiL4FMbgi9VR6f2hxEgQBGtI8t56+Y0xqqxNy1kk/ZelQsf7iwX1/dbHAf/N+T/JH/9l/h6kuYYqzSLmCMEZlSBcTb8qHLjeMCkZhPBzQNS3/+k/+Na+/8w4PP/ske82UwbBgdXnEP/6f/xc++6lfIxy0lPOCl3/wBu++9g4X15fYvrfJN7/6VZ5/+ikOmhnXfvYG3/uJsd8QAAAgAElEQVTG97l7c4snPvIh7t3d5ey58zAes3ruLE8++zxlOeC73/sRFy9eJDQeiRFXOprmgKefeIorr7/Lpz77SR5+8jzedri6wDjLxYtrfOj5S6yeXsIjVEUFXWrJi16wAnVtMCbSNgGRGmLKcKMqxmQ3aRxdF3C2zGXGxJC1RgkKiBK7Oc8/+xgH8xkvvnSNDz11ga3NzdyZrwxrh4mKj4lGFUlDYxLacFi4OWQB5c6m7PKcSx1QIuSezJyB0k8FOhxSY61dKN0//5OvvV/1OKnm3iIVwM0IxBLsOho7hktgwgHbm29S2jkwx3d7zHb2GVUVX/z130ZtpLQ19VqNCYG2KvnP/9v/mmtXbvLWD1/j6qtX+NwX/xrVAH7yo5d54bOf4vlyyN4slVguXL7I66/d4ievXuUjn97j7Mo6YdrQGWG8tE4YBpwqn//tLzHd2eXVH36fN3/yCn/rP/lDdGVEu+d55c1NnvjYLc4W69x89zpnz5/D2QJ1Bd08te9VNhCblm7asLszTU0thQFbsn0XtrYOGA1hNKpwmko2iXhSLEYRtK3iCps5dQbfJYjBGktRVYg2PPP4Ovf25tzausfGqTPMt7doihkaIoPRGk3oFlgkqqhJ4xsWI6CsW0w4wggmOjQGvEmThoyzKD43kaQaZtcFnCkWcVlPFeqnPb5fORFL9o/+6B8tmiAEkxkYNSEIMToGgxWqwTquWGM6c0SWceUpfvjSG1y9uo0r1rh3dw/vPeOVJWYoS8trDIdLPPH0M8zLwGhpRDvrGAyHXLh8mbt3tmlngclwxOXHL/H4k5fpdvZ4/ZU3efixpygGjs63dJ0ndIlOvbyxwakzZzloPKcunCHaxK5tfcO5C2usrC8zGI0w1nHzxk1WlydUruL29buJ8OgjN69t8sZr74AKGxsr9HPEoipnz60ybxpu39plNK5xheTqsAEsXRcyCyJmcNYR1ZDGT2nOsiPnLm7wyhvXKYshG+tLTPd2UzMwYMsqlZFsQvqtdYv6T+pg711cXwVI3UeH33u0IgGuJlOHjo737EepisgvjyWzGjFKpqpAJl/liv6AVgeZqaS49YsYDTREnv+NZ6jzJAD0gHvbV9kJHlNDi2fwyGna/RkTBz975WXsYJVq6TRXr9zg4oWL/Pgnr7KyvMr2vbts78555tEnefedW3zjT79Oa3eYDCdcevxxMBW3rt7kuc9+mtttxxf+g7+Fth17ezuEMOPXf+dXiPOGmzeuMFxeQQUmwzH+YMbe3T22r+8yGBZUwxHz/VugFW3bUpaJLLm+blnbGNH6luk8kSmHowH1yHAwndK1CUbYvudBYLJkAcHYEg1pzhraYRDm+3PcoOWTH3mC19++wStv7PLRJx9iNt9mf3+bpdIxtBXzMCeaSGjztERXHAveU4NuAoKN5p5Nl/pMjDOLqY49gyPEDueKVI7KbXcnJSdTVpKQ4scFuJfrZmJTDJH42AT1iCgdqYUOU3OgMY9FWkFWlnBY1M7ANDTNLrGaIjHy7MfWmc83sa7EtnD11j3ccEI0JRJrbl/f56OfOcuv/NbneePVn7FeDti+tcl874BXXv0x2nieeO4ZXvzaN3n07EV+9KOf8PFPfJyD6S5bB7s4QLRDwxxbVgzrAfPNA775b7/PaDDmc3/9r7G3M2Vvus/HfuUpzp3fYHdvh2ba8O6VG5w+s4orDRunl1heEcq6IKqnqipKZ9k/aJlMSoA8tsoQGqVtItiIs5aIcuv2ATFu8cTzAx5/ZJ1/+9V32TloGY9HeFq62S71cEJlh8x9l7NUDyH3V0ZLJBAAQ5FGgiqI2AQqmoQppk7zw6k+0lO8+7Y6fsmyy0ia0wCZ1Su5OYGU1SS0O+CsJXifJ9nERCdW0jASDBqEVsHZAu9n2HJE4VoKLDG0FNVDgLLxxAXu3rzC6gaUy8L58TqXH7mElBaZ1DzzqQ/z7htv8rFnXyCinD1oqHzk5W99h0mEwnvOXjjN//G//zN+/8tf5vTqQ+zeu4MtZpQG/HQKoWRpskSrnrXxCHFgCxgvO5ZXa1xl8PcCRWk5mO+jMqGqRly5coPLl8+hRvDeUA1KZgcxERldmsfqsISgFEXN9793laVl4fKjqygd4xE4M6Dbu8fyeMwnPnqW7754jY9/7CKry6vE6R6xnVEMa7QwdApR0kjTmN2nKoQAzpaZ8pPnvJEy3X4AoDkyYVuMLhi2vas9KWt2IojbG6+9CsTErMydMMIhYU7um07YX9L1DQ955lfMJSTbt8trTC44NzqoRqw1RFqMBEQVJx1hvkdo9vB+l8G4wElHKXvc29rk5R99n73bd/jC536V+e4e890ZN25e5bNf/hJ7d7f42p98jZtvXuORJx/ho595AVN4bt66ytadLc6vr+NMRTUY8frP3mTr7ibPPPsYPnbsbG5x9dWbXLr4ME0TmHctIoorBE9D1wbubm0zGE5ofeD61R0G1SDFaQLRK1GUd9++TekcZ04v0cQuEQ9tuunlYITXAT97Z86V965y/vxZHr8wBAm0PuLKmmAc+12NujFBHWU5Wrze2hqxLgG2rshTgBzGudS0bNKsNEym92g/tDDRuK11/Mf/1X//ftXjhGIy0nA5m4YtpP9c0E/y03CkQJvqQKkuYBYjJ/M0aD0ciNvjOL2iptjVoFT0bHXFEMtlbBmomSLSoMzwYYvRyhKf+ex59rbeQy2sPzRGT3t+9PpPuHvjNsOqwojht3/3d0GU0Bpu3LnLI08+xZmH9tm5fZvXfvYzxDieefo5HvaXCDSY6JjEVZ54fMRPfvgq62vnefFHP+Hs2XVOn1uFKqDe8N47N3j6+VWcerq24fp7Bzz73DpioI2KQTl3vmR+0FAUMN/P9UIDxgrTvSmDuuSJyxMG9WV++sYNLpxdoiqhcEoMc0rrKKTAawAp6DqPiZGyTDPiJPbr6lFNmSZq8qjTwyRBxGLlyARIPRxJ/37lhGIycnYJ5Nmv98vP+feUTBFykrAYMal5RxIOp2j3A4LT2EtNrIpUK0kDUMh0ZCpUHGJGRLOOFA0iB4yLIQUz/vwbf4K2M37n93+f9956i+2gfOlvfpnrN25x7a33eO0rP+KZZ57j3mSfydqIcmmZ8cYqq8MJ9aBme3MLUzpcVbNSTbh65y1ee/cWFxqLjTXTex1v715l5fwqq6sT2m5E6bLdFsOZs456lMdrmsi8UYpyiI/Kvf0Z+/ccZSEsFRV4T2UF33kkTtlYG7G6tsyb723yyMUJS4OC+axFHNROmbZTggUvUGABm0eZRiTmGIaYrFY47HgSyONGOQRo+zt5QpMWTwjC+KMjiHE/LLfPpg8pJIdy6PeP6t7RDSUgg9FZsZAUt5FHHon0diyPzDQWY0qUki6WqBniqfE6IZhlsKc4e+FD2HqN1dMPMRjXmNLxlW9/g6c/8UkuXrzIw48/xvlHLrO1u8/Kymkmkw0my6c5dfkyt7bvcv3dK9y9fYdzDz+Ed5Fyqeb8wxvszLZZW1/lxR9d44UXHqEcCKfOr/LQo8uUwwF1VbOxvspkaUhVWkws2bq1i9UCiYb5XLGu5N137jAYQDkuMC5iCyVqR9ftUprIqdUl/vylqwwHJSvDEaXkJjAUZ6DTDnV1skIhY2Y9dJEbVHqoQpA0JJp+95LjSL8xBmst//xPvv5+1eOkRqz/4tCuB/fu/378mPR6zVSTY2fUoxThwxJIWqIkaQCdJBew2GFDab1PPQbiQCzz6HGuYuPSEvt+l8FyzerynC9ceAJjPdEqk/Pn2N/exo0HuPGQ629f4Zvf+XP+xu9+gTPnz7Nshwyqgqn1RIXSTdgQw8r6Gt3+jCeeO4sJlul+GsgyGI4gQBNmzOb7VHVNjHCwtcc7V3Z5/LGa6TywP1MK0/Lk40u40iImzcLofCqiO1fiu4YQAh954QJX373FmeVlRkNDhSeGBlcaKu+JocVrQSwyFiepZrkoGcVIlH6XEnOYpJmjGNt9a/8+5YRGrB/NQvRYTHW0eeGogh0qnTlSxO2fppz9yPF0etGiFTOfPiohHjZJaOb4AxTOLsZeKoYojiiWKENwK7n0M6dwM4ibWGmpXGC4bplpYHu+y7lL5/idpc+xd+M23/vJj6kGI5766PMMlzaQ2DLbv0e1VGDLA2xtuHrrOmujFXYPtljbWGN/d8aoNAyc4dyZdfbmU9QYxl3Jpz77CAf78C+/8gZBDZ/++BqlUbxvqQth3nqcGxC7gFRDnPUUTrkwrtnZXOb1t2/y5ONnKQpHUSpd7KhFiH6K2BFdNGjoFqPb+5ED1uQgpO8gV017KJj0f31pqZ9ndhJyIjnqoZs0i+/3V/SPHnt/MbZXuMNj84YJmqbPKmk2hGi/45tJ3PkoSNrHBTQNsBMJIAFPJIrmQXBpmxrRRKoUHeDjgMgynV8Hcxk1Z4g6wRQTVjbOJYQ/BHbvbPKTb7/IhJrnn38OV5WUtmKpmjCsx7iyoqiH1PWQDz39NGcfOoMpLbYOrJ+qcDY12hhRqoFF6VheG1OPKtoQKEvl0kMVdamIRLq2o5nOmc+Fu9tTutanQaE5w7ba8OyHzrB9b587W1NmLfgYIEZshNJ0mNhgI2ncVEwpUgx5WrYe3oOu6/KeAPk+cAhx9B1QJyEnRlrsA3Fixr362QpH3OD9GxDEqL8Ai/l5pYTsBUWPTAQ0eZL4YWwXj0wGjBlKAbBHmnL6wXJIaqaNWHy0OC3xZkTgDuoiVVXRTPep6ornPvoC3/vun3PhYA8bWnwLg/V1JkvrHDT7NLMpoSUxT4zliWeeYN5Ome0f0G+gJNmTl2WFtCUDF6iKAz71K5dYGgqFSdMcsY7b1/e4eyDcujflo0+tMh6HBK9awDeo7LG0NODKtVuMlx9m3Qgux/bqlLZJFO6w4JUJtm/Y1TReftEcnNfNxDQBQIzJ04RSs/ZJyMlYMjgWsMfMvtA8XebwqP4ryVHg7/gXx45Jdbfe9WVKpCYGg0okmpSRJgQlJQM2JrauzW7BkgbApDFJEE3aBSSIECmJZsxc12i6C6BPsHrhc+jwMn64Qbe0xG/94R9QT2q+/2df5Xtf/TfE7U1mB1Oq0YTx2gaDpQnbsyl3drehrpi2nnqwzLtv7WCpCV0CR50r07QGgdvXb3Pn9h7LywOWVmvm3RRXKKdPr1C6wKQqsIbE+8ejEnGilDLnI8+f4uzpCd/+9huEUIAmHhnqqVykiDNEU7ymod8myKMZbwwhLHoyF3uCquZd9uJiXNVJyMkVqLIcjcN6o3XYKn+/kv3CMxz77dC9HhZ6+zFUPm2Wkygv9NshJv61xWBU8uSavJdSHoGeOihSjwCkikUQTYxSlgjxLDN9CB0/zurFD3Ph6Y8Rh0sUk2W+8KXfZrS6zNQ3zJtZUuAAS2vrXH78Yc4/epF6aUQ1GvLDH/yAc2eX+cGLP+Vf/cuXsLbIMZRBtWPeBK5d3WIwHFCUBVVdA8JB27GyXPLkwxXDOjVHHxwc5Ic50symOBO4dGGVgYu0LXhNWKWzNnfPzzFEjOqicRfyHktHy0ZK3vkkWfmfy+5PQE4ou7xPNI/rEP35P2myRX38dtzS9XKIufUi2TVGyZOccxwRsjuOKjhjsXkInMa8g5vEvAkESJEaYhfZlkSiGHx+eq0I0VqmsQMpKYpTzLzj4CAwHqyzG2eMTm/wsS+eA2eZaOTHP/ghFuGpDz3JeOU0+3tbdPNdNs6f5vO/9QX+yf/wv7F1B06fn1BWBb6LNE2DCfD4pbM8dmmNqgRV4db1XYbjVV7+2RYPn11nbdCARIIqk8kkLwRUgyGtb6nE8Ksff5bbm5ucu7BG6DxOPdYqVV0wa9NggxgyVZtkQnuPkBbqULH6JpJefrl2iVvs4ai4PJNUcxPIojtGLIdD3o7UzH6BIh458RFrl3eT6zOi3E+geSS4SGqhCxLT7IgYkAWFJnfrhJj0HyDDHiaT/iR3gEdSJmaANtQYcwo7WGW32aZYWmE/3mQwsBQxEl3kiY99DNsp/9c//V8ZLg/5wu//dfxkwt50Bylb/uF/8fdppjsQlCvv3mB1NMaNCtqpZ+feFi99/x1+7w+eZLQ04MknznPn1gFnJ8qpiWc8dpgCAhWtNohoitsW0HfHYDDjp1+/TQhDZu0+Tz25hpiIjXOGCAdxgLoh0Zg0UtSmVrcYAlAQDWmad/SAS6WmXGUxJ2TJTtxdhr8Q7TcLBbs/Cfh/F7N43eEGWEcqAj3JTmIaVZWR9rSdjM0Z6PFsN/bgZPbiMYPB/e696askaIUtTzGYXKIenOOdt25w69o1vI/YqmK/mfGrn/sczz//Yb7yp18HUzJe2kCqEa0Tvvqdl7HDirMXzjFYnqAGDg7mrCxv8Df/9kdYWh4SQ2A4HLK2WvPIpQmTsWF3Z4/5fJ+33r5NUaRRnwf7M/b3ZxmZjKg0SDSEruHhh1f7VaawBkObGoxRvPfp88cUd/WzyI5yx/q1PLpv+0nICUIYhz+fFIh331UWPx1VzqPZ6f0NrBHNrlKPxRf3N7dC7zVkkeL3ixxibg0zjq4pgHXOX3iW77/0KjFK2huiKLi6dYe5MXz6s79GDEJhaoaDFQbLq/zO730xAbGmQ4cQLWxv79PMOw66e2A9B9MZd7d3WV4fM15xlCPLfmOYLA949sOncVYprGUwgtGk71BSjChPPb3GrdubqIY0bJk0N620LnP9IkTNs/tzgkQe60Ua/dWvy/0Q00nIiZSV/viP//iw1JrLGIlteZLyi7LQw5JV2vHjeK3zKMAryLF442ix/ihD5HD75H4kXJ4voULA0tqarhjy5NMfx5WgweNsQWEto3HFeDzklW++zOrKGmU1pBgu0dGxs7nJqLCYgQMrrEyGSGwZDVYY1o6ycqxvTCiHltFySTVwnHtomcFoyO7eLmWVmLViLM6mUe1i0nut6iXu3dvDGsN4VOQJQ4JKqgJHEbA1i7GMfQIkLjW69DPJJNGyjLGLMQf/4ivfft937mRGR+Wb01uNftfXcGQ/xfvlL/+kZEYGR3LU1Aq0UKijU55jjPgQFiWTxe4d9z2tR8HJo6CyyYP70tZ9GQVH0GAQGTP3S/hwhtavpP0LXMHy2fPIYIzUjoPZLtP9XeKso6pWuLu9z+tvvUlRWorC8vY77/C9F39KO2+BNFdXTcQUjuFkgqktxchQ1AbBEX3KmjXYPMQlJS6qkdu37rK2MuHe3RnRp2WJMXLrxjaVE2xooYcx8uz+ZMkSakg/3+zIfflFJcC/qpyYki3mXulhmQc53CvyF7nUv5SiZQU4qmRRE7e+t2B9A0R//VTXTJnVURbo//MlktL1FYujShliREPaDzyxT0u6sAZyjqBLbFx4hGBqYjnguc98jOXzZykqxz/7J/+Yuq555oWP8uiHnkZswXAw4JFHH+HDH32GtfUlrly5QddFjMtTsl3B0soSZe3oQsd4tMKVK7eYHnTJ16pFJFUSiJHVlQExBHa3G4IP+K7DCpSFIrFJow8kLFB/jmFj+bNzBPj+S8fLf7GciJId3bu7b6eCQ5cU7rvB99c0/11EMzZ2/D+zOyQh/HCowGl/xwQ2+pAaOLrsUn++ynAsb087poXe9acKBlaIhaUTkzApk37uzDJRHmc6W6fpKl758avc3LyHlGOKwRL3tjfZ3r1DY4TTl56hGJzC/N/tnVusJdl513/rVlV773PrPt2np6d7pudmO3g8js2Q2IljO+GSiERBQWAQEi+8IQRR3hGPSLyAkIjyYJCIQCISRBACikOkOCgkxk4cx47tONN2T088npnunr6d675UrbV4WGvVbdc53T3ejfrhfNLW2Wfv2lWran1rfd/3/275hAsvXuQvfvpl3r57kz/79k2m8wpLhTSh0PHRbI4UBTdvlCxKx9bZC6yvb/DOzbvcvHk3BBd6T55pJmPJzs6Ys2ezAMv4CuvmbJ9dR1FRSItYTNEiRF0k+eJ9SLDpBC+0fcQrouHwiUek1157jZRKJYQizaGPaHv7JlRrd3gURuvCuL3vvGswVhITB4uqcZ7H67eahcreCZs49/Z54sKQTUybgBDr66tQvlSAcEcoeR8h7pCrKVIFX+P87n3EOENQIaqSqiy5/+4bUO5TzQ45vLHPbG/Gu3duYYqM/YNDrjz7NPPpAlc59ndnuAUoJdndu8/+QRXvuQqZWE5wMHVUVrOYSXRWUeQabXJUnoN3oAvuzjJstoGTOTIbo2SO0AYtBZkxeB0awwohQ+RsLDX1j/7Zv3qo+TmJVhO06BsfZHuiaoW7dVxbyV41JTOg8TDUF4uO3yQO6y9YZt3wWdtKrcUmoUx5CJOUVLHmR+ksSoyCOeJdLGpXoRHkm2dZVBVSC2bVLg7LaHOL6e4cJSoYHXJh6yLnL+6wf7DHueAEJdMj9vePEF6HPp4KRpMCqUuq0nNwUKG1QnrFRDgWlWBv95CNoiC15g5YV2D2TMHclziyeJsOgcP7WIs2LXz56FLmQbQScZkYrC+GamutxmW6utmqrh16a6sQTxZfoetZaDVjrY+N6GPPSkeo9pyc5ZHazLmUth+RcQFYJ6h82AlDWxpYOEvJhMrtYNkGsY7QIwJwKrGlYDTZIpusUUzOU2xewJsJ2xcvI3TB3XuHfO43/ggqTSELju45/uO//2P+7+/+KZO1CV46VJFhCoHUniwzHdVESs/2uQla5bGUlIlVloLaUCiHsDMEtvYcSW9jyKKOoVTdJfdEKf5AJzxkaHDpYTjeK5YWrCmgsWTFspWaHpSMEaC1o9f7UFIJX2Nozrkl8Fh4EV/dcScPAQgsloWosCIwq8GgMHhXhjHaNXxpoJKUlUVqwzvvfJfD3V20z9DZFqP1C6xvXaCcz/mTr3+V69/9Lj/+Ex9BKcN8vqBczLn0lGdrc5u9/V3Gk4I8N2QmR2sTiw8HD4pzwQKVQvH2W/dRKmc2m+FFdCfFqj9ahhzZsOPGuxKhb7prbQKrCrtOtDImE8J3YpMSeR+BUNkolDZahcdFyw6eH4GMir5ouUWtj07yBLxGnMvFHSq4kyzYIMJwFiWT3zOMqPLggjs5GBcRPKot5hhNikzhRC7201Q4BFFLCrupyKjkOgu5w4HbxIkMKsszly5z9bWrWCRza5EqZzQ+Q7G5zUc/8Zf42KdfRedj7t8/YrI2Ih9bPvJDz/PyRy6ztbURYIbK8to3bnJwrwSnmc8k9+8ssIvQHU4Jz/PPnwVRhXQ3F5ZcFRupGlFRiBnKl8HqljrosrjQJtEFNUB3Aki/f1ohhBHT2FoZLklEtiGFrluoC2+8l+15KOq2cbqJ1nFNO5ilhydEjYYPBVv2gyrbrhcXIxucD+HO3kmsF1RokBNsNcETCgy//MoreDyL2Ryd5czmltHaGWQ2QhjNnbu7fP7zX2H3/i4b62OMAi1D7upisWA2X3D123c4mpZYp3j7e3O++sd38TEgQcgQL4ZwSEUM2bE1uKyFQDgbG1yEYIM4afW8hLlZrc68MsU//BUda64/ocnahGb6k0hb1Rjq/0VL5Il0xeXrJIYJHgofGcV19B0glLcMA+5MQAiXiaCmiFVyhAiuUmtQegfnbwV/YuZDK8IA1ZOPNtCVAVuyv1jw7IsXEd6zvrXGF3/3m3z76jt85jM/TiXnqEqjc8cPffwZzmyts3ffsrd/EEpiSInSUFa+7r+OsCg5QmeKeRmb2CuFt6HaY9gT0ibQZqgYDuRWl9y7ohj/WJJb0EQ+sLzLJPM/kYNQhrPFaI+yglLeb/8ziIh2tDeDE8rXQLHtgLbh6BTlUXsSjqH2ONPaECIESAa82Ie0M6GxVlOKMVBRlnfIsorZbEamA6Dqfc6v/Oqv8pm//ZOMVIUzlhe3nuPOjRt8+FMf4NVPfZCD/UMyYRiPxozHBWvjNRbzkrLa5dKVTd73QU2WB93rnZtTpFzjzLmMEORpcU5gtAYRdjkpVGih48IMSJEiZkQIepRxga7QwlxpFEYKLlx23bReon1sVyQ9zE0twai++6rHIghBiB1negxJjddLiSq+2VbrcTl6OJ6XdOuAdXfq2jLzASpxViJVhhVg/RqWdUqrUNogpebmjVtkecEnPvVjiGIdRhtYpRFZxplzT7E+WcdozVo+5nd+6w/4ypeuIb1nOtvHZIrJWsH7P3CGzU1TW5rb2yO2zxZIEdrh1LtxVPZDsngoR5CMqPQ8vPT1PbwXsPwkWk2Mv2uiLZVSnY4Y6fsh3SntbH1gdpUwR4r+DOcFonVZM1iMSqhaBeCkCMVIVGvMQ7pc22hxLu4GAZZCSMNiMccYhZAFiA0c+xjtOdzf46kLT4GSXLpymbIqEaogG6/jxYLMZ5SzErdY8K1vvs5PfPKT3N27iUCxVmwwj6WwiiJnPiuZzQLoPCoCTFzFMHMhQo204NsNsEvI4ArsJONCY0XMdBytJtTHiQBPCl1nE9UXiEmibWU/fe57IvJxhAn5pOTWY0ptX4jB22EytNYNoBz/ls5RRQV/2MAIO2Wd0hd1MqFkqGCkJE6UWBylG1PZTWaLjGK0GaxYV3J0tM/u7l1G2Yg826TynoVYcOQO8NrzwgeucGT3uXrtTax3fOH3Xue//Zc/pMhG4MCWAuFyMpGTqwzvKrQCX5Vxh5a13umxaC1RotEIGpG/bJCtKmpxpWBset9nlL7PMsEN8j0mKiTI9eTPUzXomOoVRtA6kqCwtzCxBidydc5mnXiSoJG2hZqQWFi2XEXU80KtpnjudWAr9LKUktl8xje+/jW+/pUv4csSrXImG2voiWJ0ZoycZEy21zh/eZ1P/NWXcQreffeQjc0RtjrEKM/GWkGRhUJ6Qgi0CiCsMTqGN4kYROCi1IiVt4lhPUrGNojNXCQf9Kq0qRUp/g3w2dZ5jhMz9efhruvP4NFCTI47KgQYn/SL2gFVX7N93YUGXv8AABxaSURBVFS6PI3aRYYKes1ykKSPqXjJYxB2vvqguMM5FBnOTSirXYySKJXxIx//JNbOODqcsTZaR0tPOTukdIJvfeM60/uWj3z4IkpLdJbz03/jB8mMolxMuXXjNplZo6yOyDLF0VGJjWHnu7szJpum9fxbYlGkf5OZ2USd1DmzLev8+6WVRWFAM1nt4inQMFA7rDeF1bS/779/EIneq/Od96Fv0OCDSvam6JynnpAoTmvlvma30IKnrYO24Zc09CCaFM4rvI/eBuGokHi5zmwxonQGqTKEnKDMJrv7C3w2BrXB2vgywo146fnLfOSVl1BSoYTBqIL9o7uM1jIqq/jGN6dIBZtnc4SymEKEAnheUtos4mcx5N13F7+IhWqEUKEwnhCxwqJCSA1CrqzR/erDr113Z+jrYSkYEEBIUceEtSd1JST8MQzYfBIsz94jiJ6JdjgMxMIJvmG+zhmXfLIiQiiq2UV8qMtqnQPGeGewVlKVjqqCp597Dis8VhpEsc7o7FnOX34KKzz37+3irefGWze4dOlZplPPF77wBj/8sWdY3xohpCXLQgdepYNubKu2+AsqTG1ERzFJhG/qIixpvkSjo62CHoODPOFHwUntXNvxHPSkjrM8FvrwotGi2q82PQwDpt+lBu59alxZsm714mNJBAgiQiI6YUPRGMPiQURXkvXBPUZ7J087BaE8gAvd4VxyxovgHTJ6g9m8wPkilEJVCu9AeU2mRkhdYGWG04aSOZPxiMOjQ7y0KA1Cl/zAK5vo8RyVS7QOdda0CknMQsD6RrAoQyZ46KXpYr6CkAqUDLVjlUAKh6p1yFifxINfkg/vjVaWd9nGjRIKHkJmqN0UfcwsGQkByojNDHwP8GQZ1D2J2p6EoTE2Y006oKjH2Jxj2c3lXHjkFU0nXHzM/JGRsXxSMVNpqwAF+xTBIQIjV86QZ2ewtqp7V4a+5qb+fTHZYmHn3Nnd5XwxYvPMGUaTCd56Jms5z75wBucqpkczPJ7dvTm3bs7JxwohM4SwoQieVOzvTzl7JkcKjRcylJGQUNdOEGF3S1CH1jqKyifIuoRG1ifG6fv6wtsmfj4xXTvZowlbaY5J+tFDj4PjH82gByJOfMNQx18tLZaOGiCaDKf+ddr35V0IoqysxXvBYuGwPsc5jXfgylAFW0iF1IYsHzMabXLx8gv8yq/+Pl4K5qVFKMn+4RHG5Hgk4/EImSkmkxHndzYZT9ZAKEy+hhQKJQ1nttbRQocFRUiAlkKjpAmBilJ1QNg07icK8T9Oce8/7ON+0/6sHcbTvmGXRNNJ4xhA/k+i7pjSym2srfYigWZc7YgSBsaU4tjSoOodPhYzEVKhzAghc6rKINFordk73A24WlVh9CbCrLO5vc0//Pm/ydu37vLf/8cfUlrLZH2Dyim818xnljzP0blmfXOCcwtef/0eR/sgVQbO8e6Nm3zxi1cRwhAKzegIHDcbg5QSZbLoKdBIqemWBHvvtDIHeVsENjpXMuXTbgWp3GdHL6OrPFsby3WmnoyJIVPQQLzue30EXQYXUaFv4JcGhuguhBRmlfbW0FpQhBEJ2YrDci3cydYddiEUtVssHEpIlByh5Ab4XbwrybMMIUI3E4FBZWNUsY7wM5573xX+7oUt7HwPyYjQe9VTlnMEhsXCce07b/DUpbO8+L5J0PXIODqa8/TTT3PuHHztT97g5Vc/hNIGJ4NIlDokDUtt0Mq05k+i5IoKDKzkLHTFSBfB7x/TrV02hKX1GfA4eiQx2mEYv/Q67lp9q7H521hiMBwKFPyG6TzhVVUWqXUNcXzn2ptoYxBSkmWG6WwP60KbaFDowrBwDmkk+SiIyLt39rh5427I+dQaJaPhIMdIIUMBwMqxWMy5evV2DctcemabyooQCaJCm0KlFMpoVNTDmjlaXRG8lfku24Bs0stkrFOaXK/NRDTMlfycjdV3vB6QHNlNpMWDVdM+Iw/W3hDEWI3EdPR+ExcFrQtDIxEJHYkb/DUaE8jmfDQ6qI1GhPeGF198hdniHZSA2Wyf+3vvcOnyC1AG9xTa44SNKIhkNlVIP0HLksWsJDcZZek4t71Glin29h2vf3sXqQW37t/hQx96IUgCpVg7u4EsRogsDyXXtUZEZhMxeMCLYGkLnjAIoy3Xh3YpkSojetnZ6dJvEx23s/Wp1o3owh1tfS6drw+fHE8pBsF3juswmwfccpxcLD5aQyHpZWs1IgK/tYEQylh5JJVTzBYSLwyjccbW5kaokAh44dnb3cVkGUiJE5LRuMDj+N+f/xp7d2fRtRHCmkpbUpWOC+cnZNJz4cLTaKWZzUuE0qANIh+B1gitUVpFv7LCywaMlTJZoE8Qk8Eymg8sMdxJ1BY1yyLXJ9Wp+5seUyVg19XX91Gda49nWVQ2W1P7Pb3CLql4cssKixdPzuSA9TWhQ+mZCCFi2dHEsCHzO9yfwosCpUcoNNW8wlYWT2g+MSrWuPPuPbQ2CB3KB0zWDB/70b/A9vkNlAZrQxlQ8FhX4oWlGOdsb2+wWJQobUJbSKlRJqbCmSycU4YEHCFUxCtTjQzZxXW+D1ppfbIkDtKDDXpJ+C5FXybhkT4bYsAhJ3tq6h5czgMYmGjO274SpDS4rjhs/bL3ffd+kl4ZsLyetVlzXWLo9uIIXzSYnMTHWBAfsbZgcSqU2qKs7jKSisKso6TB+gpnK3I94qmdHeaLKV5olFGg5zxz6Rz3bx9y92CfL/z+O1QeXv7Bs0iZY4xAKsV0VjEpCiwgdI4u1sjWNiEboXUexHl0J7kAksWdTceS7E+QddnWx/pMkyavnph6V1nGlvo+UOgy3AMR/7YRegLav0x+kNkfltrxvukazodF4Z2gsjZEo8o0rpa4lZrKaapK4jQUo3XKyoYwIg9CaN68/gaTSYHOR1hpMZnmy1+6xu/+9k22twXve+m5kKXvBXfv7HF0tGDzzDa3391lcmUneCukZm19E5WN8DGJVxDRf6lqf7NUAVtLcMsqaOWKf5+EiLuQEHhsDGosqXedls7TZqi2Uz3sIoR6sK2dsrnGcq8A26v5720SufG8Aog5TY3C3jBgm+kCuN9q51Mf18rqiRZcvYjqaKIojiRBNAmJ9LY+t7UuZD15hSfDC4fSFuumSOVxRrL/7m1m9wSXXnyJw/kcieD9H9rh8pUN7GLOfOrxbsT1N27x5T+6xw9//CJKCy5eWgPhmM0tldGY0RmcykMHv2R8KQlKI6Ru4v6kin00n6CdrE997CuY+sGctxHxDtlD1aAF09fP+p+16djdR7ZCVeJ5QjJFgB2Ea6ouPhx8MbRDdg2J+r5pL6y0kwuwNkC+Mc/R+yj6vcSJMdaPMHpG5aoQaOAEuRnznT97nQsXtlk/t4fKRthFxXh9E6MyFrMZRsDhEWyfPcen//IWFkvlQgkFrzVmfYOdy+9HmhEVOrTplhKT5Ug1wisVQGIRuswlOEOpJwwnG6IOA3hPigaIHzzwdw+yNI/77rjjw6Q/hNhdAbXH1l8IwUhtamt4LyhLwdGRZbFY4FwVe1cKpgeHfOpTf42XXvwBJsWY6XxBaR2V8ywqG3qf6xDtsVjMuH79LQCKPGfvYIqVOWq0QTbeAGkCRmY0ItMIk6ONCcXyYucTrQ1KhkThVbHHypgsPdRufFX74UpSpdME+NH6v0/9HazNcO0JbMd2dX7f2sW8bxJD2mMUqdnEwH30x/QgfU20XuFEXXM4jDFFYgR4w3oXCit7iZBjpF4DYXDeUVWWo6MpQkhmc8vt2/dDNnxE6pVW5JOCvek+lbcs7IJFueDFFy+hpKasPOd2LqFGG4w2d7CqQKkMow06K1DFGJUVkbFyTD5CJ/xM6VAKfkWI/8rF5RL0QJdRBKHqT9PqxnUYp89cqZb8UMpc3yG/tGO0xBeEbPPwG41v6UXNWkuQx4CofIjdLxbl7vpdXWPseELEhhep5QxUEpSQeKvQckyppng/52DvNuujAilK7t3dw9uQxjYarbGYz0BU2MpxZucCh/fmOCkp1gsWpUALjRYZs3yD8ZlnKDZ2cHqMVgZtDD4zOGPQKkMJhUbitQn9SmUEZ1ekj8GKHeTtSV/GyFqWnRetm2hcGEs4FMsicWg36/8vY82L+ju6wnnI/dOAtsveh5Ou1X8O9bMYuB41IEvQ1URK8iD0DHeGyo2AEaNixGx2wNF8yvnz51mUFS4CuFpl4DV4jfQ5Shak9kAoRQV4bcjWz5OvbeFlFvIKIiArVY6WBVrn6EwjjApiM8swxtT62RNlXQ7tQN3PGxgjTCCRsUIMavKVtXGs/vn62FkbNknfp+PrXS+NI/6VYhmX6/pJj9f/TvKluhj/Xy8c0f1N+xrRCG0qPxKMuNB3QDEvM3I9xqgR3syZzvY5ODgABM5LZvOSIjNYN2exsAhvcNYiZY7F4VSByDOsHLF55iLCrOFlhtcalefBijQFSuWh5pr0ocaa1I07MDLZE5VIAs0KV/UAG5HYzGl3Z0g7X4Ikup3iBKLO8umK0z5c0rdGG5BUQLIqEZ1E35Qqlg4LfxWtNN3BXbO7y4r6dwJXi2OBWIJ12uPv7Ip4nAuNtLzSODcmcwrh98g1iMkIIV9nPNkCOSKb5JTVFCdAKMliXmGloZQOORnjxQbF+g7Z6CzWrKN1htQaVYwQJkeZsIsZqdG5wsuQGKhl3koJFJ2CM98vrYTJEqMk/yUMi7l+pk94E0BB78ISF3JZP4sHLjFW+5xtBoRlHc4L6qRdhGhqWxDF1wN0sPZO1BWGgVwsz44HKULVHwFNJnprLClqGIhwQqhSXVkQZJSl5bc+93/46z/5CRySYrQJQqLkmMrNqJxhbiVOFUz9gikSxhuIUrO1dQXkGqXLECqrwVYhNVJnSGXIMxOgEymQOotrMQKz7Xt+kqzL9gQvFotm0K0Jb1ufbWS/D6wOKfAwrKcNibCh3edR7+VB5xhaQO0xtsffzhUYogQyixgwKZDYSvL7v/c1/snP/1PsIsOrEdM5lHOFW2SUU0PlNrh/ULBgh4W+gC+eYnT2WZweU5KBzlFaozJDVhSYPMfoHKNMMD6kRykRCwiazgbQSJUnaCdLE16WJVprympBaiXT1pH6uNGQKMSHZNi+/hWOSeJX1Mya9IjErMkaFSrucFElFKKJZm0bA6K+vqsfbHgfezR5Gz/rABT1eZwIK7WzqzpCXES6L2ItfbrMJoQIpdAIHeySVaC04sbb+1RzxS/96//AptqjyD2z6mu8/c4uo8kmW+ef4bn3vUxJjitGIBWlD4WXhdIoJTHFKNyjzjBmhM6KuAg82khAgdfkJuh40A4KILg6VkAr28lSRcPw4HTNYEKExAStdX0sxLLnLebrrCSi/wwVmM4vK/VJNKdrJJdIypSqw7DjLpFa77kgz5q0N5HyDjQpwyq0UQyMJUT4XET3kOu9QldghRcqlAmtLWcPzoWmC0KB1OGvl3VrRIUEK3E2ZJQ7plgx5Rtf/yrr6+toXfDO27fZXD/Ds5eeRckMzBZr21e49MLLLHxG6cJ5vQvPXfkMLUwAU4UmL8bkWYHRWXxWoLQBDFKGVofWlaQ22ilcybMcpPBeaWU6WR8W6Iu3k/7vt5Me2sXS+z4ulna1hlGHMbfGDym7LZBdg500jN6O8W9ZnpBQiA756DxqX0+KEHWRkH0ZvgARWDO0RXQxQ8vjrQ2VwRdH/M9f+68cHR6xPh6jWXDu3Hm+fe013t3d49KVj7Bz8QpWFNQNt0grSoT1qMDkGVkxQmcmtISOi13FHIMUQxZ+xZI+tkpa2U7W1rn6BgCwtAP1zfv+Z+3zNgx5fFmq/jiOg1TaDOt96DcELVePXxapyUodOk/9GY2rKPg4YxiND+IpMEIohRxm1SOEI0QdVigJ2lp2b73NvZs32N5cZ/vsBm5xyHe+c41bt3fR2SY7F58BqaFuK0i9SEQcp5AKpTVSquAiUhqhVVTuZXx1w+WHDJ1V0UpDfRIl0Zmszj4TJBqKuki/Xzpvz/2TmDLVrUjUNgjaFmj6u6wfyo4/s5OaH5nG+drNTXsuko7XdmFZH0pOWe/ApQTbEOoTIh98i2cD8wkpoCqZ7d7mzavf4n3P7iDJ+d4b19nenHBwtE+F4vy5y1ivwavYHyE+i6R3yliD3xikMTWjSaVjVEUU5bEaUZeRlvXNVTHaSnWypV2iJzb7KyZ1DDkJB6vPHUVMW8T2GeY4XCuddygkyRMLFIvANMGf6I4teNy/7/69Q+gs5xAROgBFyEhPERfWE15pYp1H+CMye4/9t77DK8+dRxzd5PwanJuMOTicUmye49zTL2KVoRIyhHYDSgZoJuCKIbLCZAEPkyaEWde7lzagYjBi1L9qTwFd6/iJ28n6+lF7Z2k7zPvMMHQj7d93oArn8CLtTF3LtM3EbaZqT3xisCFl9qQH2mbQ9j3Ef8JYZVOlyMddj4jJybqkeYiCDbufitG9DhGbaq3nktu7N3jh6W20FNw9O+YoFxzc38cJw6UrLzH3cVeITlLnHTIq6VIGn6ySOVLlKF2Qyqx6CDqYCDBJAkzaz+y457kKemzJvf3J7Dfq7BfFG9Kt0vka3GZ5tfX1t/Y5jhvjSTR0jqFz9sVy+zqpHbXHheDIpJf6FN4ToBLhwDuHkY7ZwS4sDjiznmFnU6SdYxdHCAk6X0eaUcwkarwZ9Q4lBEIahNJIbULJ0AjlSKXQ2uDr48QSEw0tvFVZlrBCnay9CoaqWQ/F7bd/P0TLEyijRyB9F3oODU70AEMcR0tKfIuBhhZQtzjxsggWQuBsWRsroflSrPITtTuBxbsFupqh5RHzg9uIas5sesDrr1/n7p0D5tayvyi59IFXqXyGRKCEi/H3EbZRBgid5aQyKGPQJgdUzEYKERXeexCq3sOGxty34p+oHuT9CT2OoYYm+kGrqC8CU39s7wmO5eTO6SiuArBLFuxx1+qL+/Z3/TH3/z+OIbvHRBdNDX948BYtHFrM0e6I6XSXe3d2mR7MGW+cx9445KiaM0OiR2O8UMhYiUjQisfzEiclOjKd1jpWT5Sxh6aI4rJbb2xo8Zy0s30/tNL6ZP1JTd89aHLTb/tGQh8G6YvE9neJ+iK4/9kQ9ZmwowsOXK8+3nWPGTJgfCxdEEqC+qhXWoSwSGmRsoRyDzvdpyph78hx/c1b7E4d37u5h5hsMbehMaxAxhLp4W9Q4CP+pTXGaJRO+plcerZ9FaSvBrQ/X2UP8pWJSxhmhuMsy3TcEIxx7KT6BFktK6mJQj2KdN4BZb1zfaAVhpSOa0eG9K/RZT5Xi592nyfpg0DEh9JXTgXxqOMu5LzEK0MuK+a33uDerT/n3s1bXP/zW3z1m9e5/sZbXHnxJXaefZ7Ni08jTBYLoISSBAlMRSiE0pi8QOcZOh8jtYlwRnBlNbps1ANbz3jJgvd+aU5WQY8tMrZPfWUeGj2tz1zHPYh4heZacdI64rXFNP1z9McSQntONhROEpcijd/XBl9rhLEosZdYAk5mcCgv8eRIKfj1X/vPvLx+CxYz3nzzFm+/O8XrAqcM07Lkws4ErVQoEyUFQssamZdS1Yq+NDnKZN2sIxVqkdUZR0LWXonESO3ghPZctBfbKuixJJIMiamTRNfDrJq02tJrSHQ2lLb88L4tArrgcMjk7mN8D3t/g3pn/JtS7sAhY/ls70MIuJGeL3/hC3z2F3+RmzfucfvuAXfuHbB3NOdoXmJFSFWzQqDzPJarCueTUdmXMatIaoPJ81BtsVXzVaRAASEGpQU0Fv7Q96tiMFjxTnacct3+vk1D5ZlO+u2jwBABuAVEw1zL8WzHL4YHnf+B40XihEN5j7QSvKASHiVhksF/+uy/4RMffZVf/pXP88zFbW7f38ebtdATc3SG62/d5qM/9leQxQgvAgyRKYVQCiUl0mToLKcYTcjzcUD5486WIo2VbBio7X1pGzlDKkHbP7wKeix5l4mO02cSvRfQr6+vtRttdUVkUnw9HrcyPeNhz+E9TaIvMmBiCKy3vHvzBhuTEde+fY2LTz/P1FYcLo64uPMU33vnBt967Q1KVWJGm+hRATFiVyIRWmHxGFNQjMdk2Rid56gWFkbE0PrPqZ/h3ze2mmfXiNRV0MqZrH8TiU5ipAftgEO/H7L8usc2yjlCRKyoeiSx2Ka+ftiZGEHKXW4iLurBuNDGSBB6omu4evUq93bvk40mXLv+FiZTTGcztmYzFos5l545j8sL8skYPRqH2DTnQjSv0hilyUcTVF4EX6WK7iLfgLOdKuMtEXgSlNN+rqukx6L4983lIcihPUlDYnPICHiYB9F83ojDdI3+dfu/G8LV2tc56RztMVnvkbHhl4jQhcMisGAFH3714/zSL/8Qmav4e3/rMyzKEq0NRkt2Lpznjbfe4qd/9uc4e/4CR4sZVVnF0gESU4wxWU5RjGowVigTMuZbu1JbPRgCWpO4bPIwupDGo6gnD6KVV/Vp/+2/T9RmnPaDaP/mOEY6jhmPu9ZJnw99/14ByUFIxUs8Ft+KGxNIplVFMS44nC742Mc/xp9+7es4W+KRTGdzkJoPvvJKiMm3HiNCj0ypFFkxwpgMnWWx/qyuPQBtqzAxUaK+6BsqPth+v0qs7LHqZG0aisiA48Ha9jHpuJNoeedLBVLS7tMN02lTX1+r2948tP7l6+C/NAaBwrsqdPSN4fIGha8s3uS8u3dEoeBHPvlxXr92DbsouX9wwMJLfupnf471M+eYVxVZFs6njUFnOSbLYkxebKvYqybeZ6wHLcI+dDEMG31/tDIH+Un61xBG1l49J23LQ0p9+3XstUS7p+NwKYP+b4ZKXz0M1ffQElVBREakH1cXUJFCRr8lVAuHMobXrl3FKc+RXXDh2Ut87FOfrougZEaT54Z8lKPzLEIUKuBesSpiopOyxfrPOsX7JWnS3gVXjZOt3HfZ/79vyQytrOOs0CEGe9C1e9/S1suWGUjUx/VN+HZoz4OYriOaWovISU/IJhB4Jwn+AYt3JRIFTvCbv/lbrG2d4d7RlGeef4G/8/f/AcXmGSqvMMqifIVUEmEyvAo+AxmjFJu+763dK8TeBvNWdp/pcbpWpyLkQ0iYR6WVicshBnqv6PGQB+AkJn3UMXbFyHBoTx8/GnrfH1+zi4KNtTa8iI9Y+lBcRQiE9WR4vvzFP+DXP/fbfOijr/JTP/Mz/OiPfZLShYBGXzqkBhUrOHopgpO8rtfRXRT1MxEEBquPGdY3m/vvbgLtROt+c9z3SivNIG/TEFP0j38QTtbf+h99ZTU7Vfs6zfmGi7gMXetBFmXbQrbORZ2J2LMpVv+WgtI6RFXx1tvf47P/7t/yz//Fv2TnyhXWz5ylBLwMOoyhp4Z4Hzemk8chhGizVece2wusq/DLup5a+/6fKHEJj26VDU1sopOwrAeKL3G8RdSHQI6DKh527EM7WzO+mMspgpPc+xDLL5VEiozf+F+f4x//wi/wwQ9+kIUQVD4ApsRzJJD5QXDCSQtZNF0qBscfnwrgOvBMAm5XBWF099NTOqXHQI+10uIpnRKcMtkp/X+gUyY7pcdOp0x2So+dTpnslB47nTLZKT12OmWyU3rsdMpkp/TY6ZTJTumx0ymTndJjp1MmO6XHTqdMdkqPnU6Z7JQeO50y2Sk9djplslN67HTKZKf02On/AVuey/Eaf1lYAAAAAElFTkSuQmCC\" y=\"-21.499943\"/>\n   </g>\n   <g id=\"matplotlib.axis_3\">\n    <g id=\"xtick_5\">\n     <g id=\"line2d_9\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"216.117045\" xlink:href=\"#mf0703fa143\" y=\"174.499943\"/>\n      </g>\n     </g>\n     <g id=\"text_10\">\n      <!-- 0 -->\n      <g transform=\"translate(212.935795 189.098381)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_6\">\n     <g id=\"line2d_10\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"258.389773\" xlink:href=\"#mf0703fa143\" y=\"174.499943\"/>\n      </g>\n     </g>\n     <g id=\"text_11\">\n      <!-- 100 -->\n      <g transform=\"translate(248.846023 189.098381)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_7\">\n     <g id=\"line2d_11\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"300.6625\" xlink:href=\"#mf0703fa143\" y=\"174.499943\"/>\n      </g>\n     </g>\n     <g id=\"text_12\">\n      <!-- 200 -->\n      <g transform=\"translate(291.11875 189.098381)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_8\">\n     <g id=\"line2d_12\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"342.935227\" xlink:href=\"#mf0703fa143\" y=\"174.499943\"/>\n      </g>\n     </g>\n     <g id=\"text_13\">\n      <!-- 300 -->\n      <g transform=\"translate(333.391477 189.098381)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-51\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_4\">\n    <g id=\"ytick_5\">\n     <g id=\"line2d_13\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"215.905682\" xlink:href=\"#m468a06e24e\" y=\"22.529489\"/>\n      </g>\n     </g>\n     <g id=\"text_14\">\n      <!-- 0 -->\n      <g transform=\"translate(202.543182 26.328707)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_6\">\n     <g id=\"line2d_14\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"215.905682\" xlink:href=\"#m468a06e24e\" y=\"64.802216\"/>\n      </g>\n     </g>\n     <g id=\"text_15\">\n      <!-- 100 -->\n      <g transform=\"translate(189.818182 68.601435)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_7\">\n     <g id=\"line2d_15\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"215.905682\" xlink:href=\"#m468a06e24e\" y=\"107.074943\"/>\n      </g>\n     </g>\n     <g id=\"text_16\">\n      <!-- 200 -->\n      <g transform=\"translate(189.818182 110.874162)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_8\">\n     <g id=\"line2d_16\">\n      <g>\n       <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"215.905682\" xlink:href=\"#m468a06e24e\" y=\"149.34767\"/>\n      </g>\n     </g>\n     <g id=\"text_17\">\n      <!-- 300 -->\n      <g transform=\"translate(189.818182 153.146889)scale(0.1 -0.1)\">\n       <use xlink:href=\"#DejaVuSans-51\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"patch_8\">\n    <path d=\"M 215.905682 174.499943 \nL 215.905682 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_9\">\n    <path d=\"M 368.0875 174.499943 \nL 368.0875 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_10\">\n    <path d=\"M 215.905682 174.499943 \nL 368.0875 174.499943 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"patch_11\">\n    <path d=\"M 215.905682 22.318125 \nL 368.0875 22.318125 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n   </g>\n   <g id=\"text_18\">\n    <!-- transformed image -->\n    <defs>\n     <path d=\"M 18.3125 70.21875 \nL 18.3125 54.6875 \nL 36.8125 54.6875 \nL 36.8125 47.703125 \nL 18.3125 47.703125 \nL 18.3125 18.015625 \nQ 18.3125 11.328125 20.140625 9.421875 \nQ 21.96875 7.515625 27.59375 7.515625 \nL 36.8125 7.515625 \nL 36.8125 0 \nL 27.59375 0 \nQ 17.1875 0 13.234375 3.875 \nQ 9.28125 7.765625 9.28125 18.015625 \nL 9.28125 47.703125 \nL 2.6875 47.703125 \nL 2.6875 54.6875 \nL 9.28125 54.6875 \nL 9.28125 70.21875 \nz\n\" id=\"DejaVuSans-116\"/>\n     <path d=\"M 44.28125 53.078125 \nL 44.28125 44.578125 \nQ 40.484375 46.53125 36.375 47.5 \nQ 32.28125 48.484375 27.875 48.484375 \nQ 21.1875 48.484375 17.84375 46.4375 \nQ 14.5 44.390625 14.5 40.28125 \nQ 14.5 37.15625 16.890625 35.375 \nQ 19.28125 33.59375 26.515625 31.984375 \nL 29.59375 31.296875 \nQ 39.15625 29.25 43.1875 25.515625 \nQ 47.21875 21.78125 47.21875 15.09375 \nQ 47.21875 7.46875 41.1875 3.015625 \nQ 35.15625 -1.421875 24.609375 -1.421875 \nQ 20.21875 -1.421875 15.453125 -0.5625 \nQ 10.6875 0.296875 5.421875 2 \nL 5.421875 11.28125 \nQ 10.40625 8.6875 15.234375 7.390625 \nQ 20.0625 6.109375 24.8125 6.109375 \nQ 31.15625 6.109375 34.5625 8.28125 \nQ 37.984375 10.453125 37.984375 14.40625 \nQ 37.984375 18.0625 35.515625 20.015625 \nQ 33.0625 21.96875 24.703125 23.78125 \nL 21.578125 24.515625 \nQ 13.234375 26.265625 9.515625 29.90625 \nQ 5.8125 33.546875 5.8125 39.890625 \nQ 5.8125 47.609375 11.28125 51.796875 \nQ 16.75 56 26.8125 56 \nQ 31.78125 56 36.171875 55.265625 \nQ 40.578125 54.546875 44.28125 53.078125 \nz\n\" id=\"DejaVuSans-115\"/>\n     <path d=\"M 37.109375 75.984375 \nL 37.109375 68.5 \nL 28.515625 68.5 \nQ 23.6875 68.5 21.796875 66.546875 \nQ 19.921875 64.59375 19.921875 59.515625 \nL 19.921875 54.6875 \nL 34.71875 54.6875 \nL 34.71875 47.703125 \nL 19.921875 47.703125 \nL 19.921875 0 \nL 10.890625 0 \nL 10.890625 47.703125 \nL 2.296875 47.703125 \nL 2.296875 54.6875 \nL 10.890625 54.6875 \nL 10.890625 58.5 \nQ 10.890625 67.625 15.140625 71.796875 \nQ 19.390625 75.984375 28.609375 75.984375 \nz\n\" id=\"DejaVuSans-102\"/>\n     <path d=\"M 45.40625 46.390625 \nL 45.40625 75.984375 \nL 54.390625 75.984375 \nL 54.390625 0 \nL 45.40625 0 \nL 45.40625 8.203125 \nQ 42.578125 3.328125 38.25 0.953125 \nQ 33.9375 -1.421875 27.875 -1.421875 \nQ 17.96875 -1.421875 11.734375 6.484375 \nQ 5.515625 14.40625 5.515625 27.296875 \nQ 5.515625 40.1875 11.734375 48.09375 \nQ 17.96875 56 27.875 56 \nQ 33.9375 56 38.25 53.625 \nQ 42.578125 51.265625 45.40625 46.390625 \nz\nM 14.796875 27.296875 \nQ 14.796875 17.390625 18.875 11.75 \nQ 22.953125 6.109375 30.078125 6.109375 \nQ 37.203125 6.109375 41.296875 11.75 \nQ 45.40625 17.390625 45.40625 27.296875 \nQ 45.40625 37.203125 41.296875 42.84375 \nQ 37.203125 48.484375 30.078125 48.484375 \nQ 22.953125 48.484375 18.875 42.84375 \nQ 14.796875 37.203125 14.796875 27.296875 \nz\n\" id=\"DejaVuSans-100\"/>\n    </defs>\n    <g transform=\"translate(234.382528 16.318125)scale(0.12 -0.12)\">\n     <use xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"39.208984\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"80.322266\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"141.601562\" xlink:href=\"#DejaVuSans-110\"/>\n     <use x=\"204.980469\" xlink:href=\"#DejaVuSans-115\"/>\n     <use x=\"257.080078\" xlink:href=\"#DejaVuSans-102\"/>\n     <use x=\"292.285156\" xlink:href=\"#DejaVuSans-111\"/>\n     <use x=\"353.466797\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"394.564453\" xlink:href=\"#DejaVuSans-109\"/>\n     <use x=\"491.976562\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"553.5\" xlink:href=\"#DejaVuSans-100\"/>\n     <use x=\"616.976562\" xlink:href=\"#DejaVuSans-32\"/>\n     <use x=\"648.763672\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"676.546875\" xlink:href=\"#DejaVuSans-109\"/>\n     <use x=\"773.958984\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"835.238281\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"898.714844\" xlink:href=\"#DejaVuSans-101\"/>\n    </g>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"p655743e8d2\">\n   <rect height=\"85.495403\" width=\"152.181818\" x=\"33.2875\" y=\"55.661332\"/>\n  </clipPath>\n  <clipPath id=\"pea659479d5\">\n   <rect height=\"152.181818\" width=\"152.181818\" x=\"215.905682\" y=\"22.318125\"/>\n  </clipPath>\n </defs>\n</svg>\n",
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAADHCAYAAADifRM/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9edwtSVnn+X0iM8+73P3WSl0KaqMQKMBRFkW7xQ2lXVA/2i49DS0I2rY6bTvjqOM46rj2pz/T6OioaCsqtorjiqK24oKKMGgjFMVaVdR+q27d7d3OkhkRz/wRGXki8+R5771V96VuXfL3+Zz3PSeXyIjIiCee5xdPPCGqyoABAwYMuLxgnugMDBgwYMCAi49BuA8YMGDAZYhBuA8YMGDAZYhBuA8YMGDAZYhBuA8YMGDAZYhBuA8YMGDAZYhBuA8YMOCcEJE1EXmLiGyIyG890fnpQkT+SkS+Ycm57xGRX/h45+mJRv5EZ2DAgAHnBxG5B/gGVf3zJ+DxXwlcA1yhqvYJeP5jhqr+yBOdhycCg+Y+YMBlAhHZS2Xt6cBHHotg3+N8DViCQbgPGPAkgIj8KvA04C0isi0i3ykiN4iIishrROQ+4C/qa39LRB6uKZS3i8hzknTeKCI/LSJ/JCJbIvIuEbm5Pici8p9F5ER97/tE5DYR+QHg+4Cvrp/9GhExIvK9InJvff2viMihOp2FfCXHvl5E7heRMyLyTSLywvo5Z0XkpzplfrWIfLC+9k9F5OnJuc8XkQ/V+fwpQHapu+8XkTd18nZe+RCRm0XkL0TklIicFJFfE5HDyflPEZH31HX5WyLymyLyQ8n5LxaRf6rTfYeIPO8xNYDHAlUdPsNn+DwJPsA9wOclv28AFPgVYB+wVh9/NXAAWAFeD/xTcs8bgdPAiwi07K8Bv1Gf+wLgH4HDBGH5LOAp9bnvB96UpPNq4E7gJmA/8DvAry7LV3LsZ4FV4GXAFPg94GrgGHAC+Kw6jS+r039Wnc/vBd5Rn7sS2CRQRQXw7YAlUFZ99dbk/THk4xbg8+u6vAp4O/D6+twIuBf4n+p8fAVQAj9Un/+UOq0XAxnwqvodrnxc2ssT3WCHz/AZPuf32UW437TLPYfraw7Vv98I/EJy/l8AH6q/fw7wEeDTANNJpyvc3wZ8c/L7mUBVC+KFfCXHjiXHTgFfnfz+beDf19//GHhNcs4AYwI99Ergnck5AR64QOF+XvnoSevLgPfU3/858CAgyfm/TYT7zwD/Z+f+D8eBY68/Ay0zYMCTH/fHLyKSiciPichdIrJJGBAgaLsRDyffxwTNG1X9C+CngJ8GHhGRN4jIwSXPvI6gtUbcSxDs1/TlK8EjyfdJz+/99fenAz9R0xlnCdaGEDTr69K0NUjNvmfthvPKh4hcLSK/ISIP1vX5JuZ1eR3wYP38iDQfTwe+I5ahLsf19X17jkG4Dxjw5MGyEK7p8a8DXgF8HnCIoKnCLpx0KyHVn1TVTwWeA9wK/C9LLn2IILwinkagRlIh+XhCzt4PfKOqHk4+a6r6DuA4QUgCYa4g/X2R8aOEcjxPVQ8C/yPzujwOHKufH5Hm437ghztlWFfVX9+jvLYwCPcBA548eITAce+GA8CMQDWsA+ftBlhPKr5YRApgh8BFuyWX/zrw7SJyo4jsr5/zm3rx3CR/FvjuOBksIodE5Kvqc38EPEdEvqL2xPk24NqL9NwuDgDbwFkROUZ7sPt7Qv18i4jkIvIKwlxGxM8D31TXqYjIPhH5IhE5sEd5bWEQ7gMGPHnwo8D31ib+/7zkml8hUCQPAh8A3nkB6R8kCKQzdRqngP+05NpfBH6VMMH4McJA8K0X8Kxdoaq/C/w48Bs1HfJ+4OX1uZPAVwE/VufxGcDfXaxnd/ADhInRDcKg8jtJHkvCJOprgLMErf4PCYMrqvoPwGsJVNcZwgTxv9mjfC5A2nTRgAEDBgx4rBCRdwE/q6q/9ETnZdDcBwwYMOAxQkQ+S0SurWmZVwHPA/7kic4XDMJ9wIALgoh8oYh8WETuFJHveqLzM+AJxzOB9xJom+8AvlJVjz+xWQoYaJkBA84TIpIR/MA/n+BX/W7ga1X1A09oxgYM6MGguQ8YcP54EXCnqt5dT6b9BsHtcMCASw6DcB8w4PxxjPYilQfqYwMGXHIYorUNGHD+6FsItMBrisjrgNfVPz91T3M04BMeqtq7QG0Q7gMGnD8eoL0C8amElZotqOobgDcAiMgwqTXgCcFAywwYcP54N/CMelXmCPga4A+e4DwNGNCLQXMfMOA8oapWRL4F+FNCCNdfVNU7nuBsDRjQi8EVcsCAPcRAywzYayzj3AdaZsCAAQMuQwzCfcCAAQMuQwzCfcCAAQMuQwzCfcCAAQMuQwzCfcCAAQMuQwzCfcCAAQMuQwzCfcCAAQMuQwzCfcCAAQMuQwzCfcCAAQMuQwzCfcCAAQMuQwzCfcCAAQMuQwyBwwYMuMTxoQ/eiUgIH5LGghIRzic2VPe6+D1NMx5T1eZ4f2K+c0DphrQXEbz3rWenzzzfeFbptTGNbjoigicczzODqGK85xd+7ud4yad9Os9+9rMpRbAKWZYtlPVc5e3mN/3dV6/GmIW6FBGstc09xhi894gIL3zhC8+rLh4LBs19wIAnAVKhdL7X930HGoHTh10FO4Ca8Nnl3lS4pUL+fNEnfOP/ufAURDJ8vX9KuAac89iy5F98wcv5qde/njve+142zpzBiKDeN2k751qCfVnd7ib8VaX3vbR/C2AwxpBlWevZex20cRDujwMi8rMi8r9f7GvPkc4NIqIi0mt1icgdIvLSx/ucAZcWugLmXMIhvX7Zdd77lvA1xjSC//yEcVtrT4VxSC/DmLaI6VoNu+UxPZamkxlDPGWkfh4G8YbCGIo852lPezqv+4bX8r9913fwE//xR3n33/4VBQ7xDu8cVeWxlcNXFWotqh6n8ZnLhbWqQvygrbrqWhrxv/dzYZ4OUrHu9wpDyN8nGUTkBuBjQKGq9onNzYBz4WKE/P3QB+/cLf1GQ+4K0oiu9plqw+mxC4J4+oR7W2jH722Bl9I256SBOteLCOo8Ijkeh1AF7d0XFAgZFc54vGZkruK/vP5HeM8/vZdiNOL6G2/ia1/5alYPH8VqhjpHphaTGaQYoVlOhmCMECyDUJ+RQhERROvSqIJZHKC6gj6WOU3D1xaEMYYXvehFF1TtfRhC/l5kiEj2ROdhwCcGupp0V1B3tcLufV3hmQqg7v/uJ2rzS3JGKkIWr5sL/z5B13/PIhprgCBc433GC6IGQTDGY8SHa0yBR8EoX/iFL2P77BmOrK/x8H0f481v+iWmG2fw5YRqNmY2mzCbTbDVFG9LvLM45xqrJrVEGn4fRYWFel9G8RhjFurx/K2jx45BuCcQkWeJyF+JyNma3vjS5NwbReRnROStIrIDfHZ97IeSa75TRI6LyEMi8g01fXJLcv8P1d9fKiIPiMh3iMiJ+p6vT9L5IhF5j4hsisj9IvL9F1CGe0Tk8+rv3y8ivyUibxKRLRG5XURuFZHvrp97v4i8LLn360Xkg/W1d4vIN3bS3q18KyLyn0TkPhF5pKah1i70HQxYRJeC2Y1D7072nS99s0zAL31Wi3vfbQCY3xMF3IVaCU0Z6vuMMRgVDGAUDAYxIEbx6lEyxEA+Mriq4pk334pxwno24pH7HuRdb/9rxAV6pqwss1nFbDLDzspAoXgH6lHvWtRJl8ZaNsgCzQARNfV4bff7XmIQ7jVEpADeAvw34GrgW4FfE5FnJpd9HfDDwAHgbzv3fyHwH4DPA24BPuscj7wWOAQcA14D/LSIHKnP7QCvBA4DXwT8WxH5ssdYtC8BfhU4AryHsEWcqZ/7g8DPJdeeAL4YOAh8PfCfReRTzrN8Pw7cCnxyff4Y8H2PMc8DLhBdwdnVKPu0+K4XyG5IB4+Qrmm47nB8+f0+mciE4LWSCvtzabEigqErSB3UaWQEYe/VIXmGqOWqg+usG/j7v3kn0+0xs8mYw/v3MxLPn77l99g6cxLxlrKcMZ3sMN7aZPvsaXY2N5ju7GDLGd5VjYBPBXu3XOmA2i1L3zXnW+ePF4Nwn+PTgP3Aj6lqqap/Afwh8LXJNb+vqn+nql5Vp537/yXwS6p6h6qOgR84x/Mq4AdVtVLVtwLbwDMBVPWvVPX2+jnvA36dcw8Wy/A3qvqnNT//W8BVdRkr4DeAG0TkcP3cP1LVuzTgrwkD3T87V/kktNLXAt+uqqdVdQv4EcIG0gMuEvqojD4BsUx7T4XMbt4h3WeeSwCf78DQzduFoPf5ErRgoyZMAYigoqzlOaacsU8M73rnu9jc3GBnewvBs7a6At7ygdtvr2mYGVU5pZxOqKZjyumEcjbFliWuLPFVhbeu8XCBILCja2OE9751TRzAuh456bFlcyQXC4Of+xzXAferajo830vQQCPuP8f9/3Ce1wKc6kyIjgmDCyLyYuDHgNuAEbBCEMyPBY8k3yfASVV1yW/q554VkZcD/wdBAzfAOnB7fc1u5buqvvYfkw4ohE2kB1xE7O521y80U9/rZdd1aZhl9El3gInXRO+PZcJ72X3p75jPlLroK2cmghdF8RiUTHOM5FSAZPC+f3wnv/IzP0nhPEynjEYZk2lFZT0nHnkUg+Gtb/k9rn/6U8nX1hEU9R7nFOcs5TTHVSXF6ipFXlCM1pA8Q9UgmWkEc8ynqrZ86OPkdixTN//poLuXGIT7HA8B14uISQT804CPJNfs9jaOA09Nfl//OPLyX4GfAl6uqlMReT1w5eNI75wQkRXgtwl00O+raiUiv8fc5WG38p0kDBTPUdUH9zKfn+joasHLhGWK8xEiXY0+Cp8otLrXSnRBFIPX4Eq47Pnng92skWYSFVhIXQ0q4Xie5yCOZ956K0cOHeb0g/dz843HcM5y4uRJ1lZXGY1WuOtjx6myitnOGOd9GBHw5Bgk91TMEA1ulpkKPqvIBNQoeI9Kv3tn6hGzrHx9nkp7hYGWmeNdBK77O0WkkOAr/iUE6uJ88Gbg6yVMyq7z+PjmA8DpWrC/iMD17zWihfAoYGst/mXJ+aXlqwfDnydw9FcDiMgxEfmCj0O+P2GxTDuOOBcFsyzNdAK0q3HOhZei6lGCUG+5Cz4OLvl87xWJ1wqKxxsFPJkIV11zLZs7E25+xs088tDHWDNj9o0cG2ce5uorDvP8227mmTc9jWqywWy8yXS8WXPsJd6WZN7hqinT8Q7lbIydzajKWfCJ9wpeWwui4qRpN/+pJt/1Zkrv2SsMwr2GqpbAlwIvJ2ii/w/wSlX90Hne/8fATwJ/CdwJ/H19avYYsvPNwA+KyBZBiL75MaRxQah58m+rn3WGMKD8QXL+XOX7X+vj7xSRTeDPqecQBlwcnEtI97ngXUjaqRDajTYQqQWqOlQ9xswHgvZ9i+ENzkf4n881isdoeIbPFJ95clGMKjslfN3rvpW/e88/8m++9nN42Utv4zNfcDM3PvUKClNSTs5w47EreeCuD7B58kGmO2eZjDeYTLbw1YxqNsOXJXY6YWd7i+kscPGz6RhXBXdJVdd4xEB7cOsT5GkdPJZVu48FwyKmPYKIPAt4P7Cil+Fio8u9fBcLsgeLmPoECCxSM4/F/O+jeRbT0Jor8Qt5iPeG4xnR172Pc94NqdWR0jLz/x4wiBpc7jAGVkXIMFhWWBkJf/57v8xzDpyAcsq995/gYw9NeOT0Dnd/7D6uPXYd1xy7jrUjR1k/fBUmHzEarTDKA1NdjFaRLMcUI1bW91OsjMiKFUYra2RZhsly1OTNABr/x7J1Ofk4+KXvbljE9CSCiHy5iIwkuDT+OPCWy0nwXe7lezJgN226zw2vO0m6bNI0UhytZ1HTLqLNJx6Lj1nGLwdht9zVchlllP5W7xvBrgK+/tRTuGHBknhyIENQDE4EpcT7CV/6ZV/CU5/1KRx6yjGuf/oxrrvqIGKnGFexVhSMt3awzlFVM8QraoNve6g7h3MWbyt8NcNVM3AW9RZrS5y1oL716dPOU2ometmkx/YSezahKsEv+icIHhO/oKo/tlfPuoTwjcAbAQf8NYFeuZxwuZfvkkTU+LqudfHcMnQ15N28X+bCNtHaDXR9COLS/LnD1WIa8+P9XjGpN0nfvMH8HoP2DBAqYDQMMCYsWQJCEDFFyMUivmLmPfnRG7hyfZ28WMNVwsGD+3jq1Ud49PQ2D973MayxHFvbhy8sqgbnFYMi3mAE1AnVbAoaaKAsz5FshNYUkPeuzjMoc+09curp/EVa/o8H9kS4S7DHfhr4fOAB4N0i8geq+oG9eN6lAlX9wic6D3uJy718lyr6PC12845Jj6caZIqU1tlt0OgbIPq45N34425aqfDrugqmE43GGLzzLcqjSdPX12dBlW/4dwQxGaohvoz3BVlxkGztAHkBB9cNN15/NeVkjFxzkJ2ds6xkJkyQ4vF1OqIOCTEGsNZijKEyltz6OlhZPaGa1oHp91xK31+3zvcSe0XLvAi4U1XvricqfwN4xR49a8CAyxpdN8Huis+IZZp595PGOulOpCIeMYqYKIjCJ3Dc6WfRbXJZ3ruDU1+5lpWhKyD7nwExzrzEv5Jh1WB1BWvWMWuHOHLFIY4eXGG8+SiZzljPHavMsJMxog6vHh+jx2hdTvEY9XhVnHNYa/HO45ynqkrUOsTPaZe+yehuPT1ej6LzxV7RMsdoL3J5AHhxeoGIvA54HcD6+vqn3njjTa0ElDYD2J5/77+mi+49SjQVk/uCV9c507og1CN6838hR323dM+dKzd91/ekr+HPxdAR5lm8sMmxxXT6oxQuu/axpJfi4YcfZmNjY+970x6hq/l2J+dgdw+MZfXbdW0M3i9gzLz59lEIywTwMix71308fNcFs8/jR1XJsgIiNeRDhxYTqSKDYhAzwuYgpiDbP0XzFVbW9nPTTTcyLUs2NrcxwIP3fICbn/dCYBT85r2iEoS5KGQZqK3wIriqAjGMMsHZEBlTpEAkR+pJ3kBb7TKXoLtH8bxY2Cvh3ve2W6VV1TcAbwC47bbn6v/7278HhAmTrmm2rKKWaQTxXN99wY1reabF9y8M6fN5SDtYn+nV7YDtXWw8qrFjtSdjFvKVmH7hGtNazde+JiyBNp3FodZX5+yE3Wh9LY8FyZJASMFMdc61zP90lWLqGresPGk9pvW5rA7SDRb64nxkWUZVVeR53irLa1/72l3Lfamj2776NL+uoOiu8uzrK+n7UfUg8Rit893nLbRrdn93Kbp56utD6bkubaMavGfCpQajvlGgjMRdmcIxNSAYKq8c2H+I7dF+zmydIl9dw2crZCOPjrewdgtfTciKdUzMg9a+7Ei9eKlCncHbCozBu4Isz/HOYYGRMagxjebYpaB2q4e9wl4NHQ/QXsH4VMIK0KXwAmras/dpQPv0JS8LQ7ps8qirKeQ+fDIF4zUELo0agxH8Ek+AXqEvbd/WrqBaNtmURtJLzeVUcKVppXViDHhvAU+olmBCWlsGNy0kXIPijcdlIURpnue96UeTsq3J0el082d169MY06SdvqcuFZB24JRaSLW09PndYE3pe08phfY14FwF+IVyPlmRtq+uspNSLCk3vcyi6g66zTuufdXzfPH9RcT67ku7++wUu9V/V4i32qAJwrpRYDT6yACq4buY4GwpgqpHVAGHxwWKRULexjPP2qFrufuhU9z/6CYPnx5z4swOo/X9GK148N47WZFa79aax2+Co8XAYRbnZ3g3xdkpqq4+T7MhB/W0brfO0rgzsf6frIuY3g08Q0RuFJERIYDUH5zjnoUIarA4MRSFU6qp7MbLLeO/oG4oIhgNGjvOkyH17Ps87eUCenEQybJsYUutpuMt2Z6sq03Fe8/FzXUF6Gg0CgGN6k7h1IZGaUtGedEb8Ch2rFQodz/x+DLTP73WOUcXfdZNX0TAbqNP89UNtdr3Xr23rYEky8Kg9PHQkvYS6cAPi/TFMssnBq/aTQlp0iYIx3Sg7U5kdtNKn7nMWhOETEwjmDMxzceE/ZMaT0vTeU9dpacplzEYFLxDPTg0uEkS5gwyIXyikDWCyjpldoQDx27h9nseRdev4dFtOLkzZv++NaYbJzn50F1kriLXsNJVAOfBq0JtEVRlWK3qqhm+smEXJ+/Dx1bgwsIu1NXTu76maxb71l5jT4S7Bt/nbyGEl/0g8GZVveMC01h6PNU+d9NS4vk0PREJgfbrT5+garTYutHhtZXWMjMrfXHLNghetgdlV6CdSyDFRh+FacvtKs/wBJeuFRFWCOWw1pLn+UKQp2WTQamw6NZzd2CJA25Xe98trXhf+m766jcOmum9ab5jvTV1qRYxivNVXS+7VuUlj9ieUu0dFnn2riBMqZn03aaTqU277PCOqTWXto+Y1tyKnA8AqdI1by9BmxZqrtb7+UcTq1nCZhypgG+Ef31ORMhMCP6biannBhRjsuAhI8EVMuxtGp8owbPG5KweupLrb30WH73vBA88fJr1w1dyamOH/esHyHGcPfkAmVgycRiZc8t1xIEQXMzaECmyqsJ37+oNPiw+CnYfyrybMN9NZl0s7Bmjr6pvVdVbVfVmVf3hXa9lUVikAjxFPN5ttNAWIF3tpCUUJIz28aNGUCPNWzSE713aYDfNfdmzu1TD/MZ21Xd3TU/T75rGqbYU6ZB5fdXR6CRnNS/Ivecv3vJWfvwHvo+RUVDHZDIJg4K63jpul8EsPLPOcfM93bmmKzRSrb0vnW7Z0mPdekjrJ8uyZqAK14fnm6x9vckuD1om1WK7m0YALYGf7iCUKht9dd9+X/3x3/sG5b7316fRmzrIVhTirbTq46iGT086zbF4f7xHwuDgReeCXA2K1AJFUDWEZTY5zoPNMg5dfR1HrrmWUxtbnDq9iRnt45ZbbubqKw9hyw1OHL8fvCUs5dCgGKTtURX1rhHsztsQjsDW+6RGLd63BXufErnXuGRWqKaN1Ks2n/Rc99qI3Uz+SLk01EtPGuK1OddtrH3HVPvT6T4f+qmmNtqxKQLMQkfqDn7dZxtjwCuZ8agvEWfIvUdzwxd8yRfz8N138D3f8lrW3Iw8H1FOZ9idbZz6WvufC3lVnfObiUbXpsPa5cqyrDkfP8sEQKoRxrwvE/Kx/H1zAvGZIon3gc53mo/nl6nuIvKLEnaken9y7KiI/JmIfLT+f6Q+LiLykyJyp4i8T+pNTD4e6Fo33Y05ukpFd4CN9ZFaVmkaoU7bVmt3jitSPKFtZgvvNB1E4rXe+yCMO+04pX+iAI3CPkY2aKxmiCx7R2EIniom5p3Au6MZXk0Q+JohPgv/sywocqM1vvjLvoL1fetsjcdYDCdPPsozbn4a11x1kAfv/TAP3PshMp1iKFFviQMHSPCJcFDNSmbTCdVsirMlqsEf3toqcPOuBOfDylcNi53OLQsuLi4J4R4bVsrZLTMve7Vg5vcDDVWRCvMIo4u/RWoKpifdriDtM7OWCdyu9tNPtywu0Oj6ES9qWO1yA03+xQtChskcXgXJV/GZ5747P8pTjx7mP/zbV+MnZ5iON9kZb1FNd3C2pKqqtileLzTvah6poOlOcHZd9PpiWaffUyplWYPvHu/SMCsrK80ik3g+7JIWvGuMSffwWcAbge7CrO8C3qaqzwDeVv+GEFDuGfXndcDPLE/24iLWbZyU82rrEACSCBXbXAs0wjweSy00xeF8heKCBiy+9Rxo0zKq2lhncVI90poYQdFmMI1Wb6RUqIV5dACQegFQ9J8PDK5Ha47adD6Cx6hD1JHVNEwQ7FJ7rXhEHXgb/kvIW5xSJfOYzIL3GNbIdI3bnvvJbG1tYe2Up1x3JRtbZ7jvwftwvoTqLNun7uXBu+9gJCWFCemGLfwsTkqsVnh1oJbZdMysnFLZsq4rcLYCKryvcB4yU4Dahoc3ooGLX6J0XCxcGvHc6/4bO2NY9azzQEHS9vBYpj23eGelpbFFYeO9X9iyy7TmtxefGa+LWOaf2tWyu/lb4N3IofFBb9MjqXA8F2J5RMJkcI6g4pE8A19y9YFVPunGW7nngx/huZ/yybztLb/Pi176OWxOJmQ7O+SjVdbW1lnZt06WFTjNmnLGCeHUcujjetPyx3v6lpnH7905iXOhe10q5FdW1lrCKGjsFiM5aMay5FX17SJyQ+fwK4CX1t9/GfgrQsTLVwC/oiET7xSRwyLyFFU9fs7MP07EuiuKAmstRTFClZaWfS7qq2mPiSCft9GoPbcnRNPBoWstaOxrJi69VzIx+EjtaN2uG8VkrnGH928Xnh/SboiXuj2HtNNnG6NhfVFM2wSuvk/x8UoYCE0Y8BHBWce11x1g4+wm3/zvX8mpO9/L2dMnOHrNVVitmM4mzMqKzc378H6VnWmGZisUxTpO9+H8Kk4zqumEoshRK1TVBKeQZTlFkVOVnrxwYCyzypPXdGEqo9hjb5lLQ7izyM3GY+nxLroCp89U7L1ek/MKzrulfsLLnt1q6DqfmMyyrOWP3S1X2+Stn2PmO9mk6adIJ0G7wjQiEwGxZG6EM+Bzz723v5dv/r7vodwes7m5wewf/oGTf/sOnvuCT8V5papKzHQC3qKiFCurGJOTFysta6qvbM651g40fR4dy1znYv67760PaZm70fZSgR7fQV1jrWsvANdEga2qx6WOT0//wrxjhE1MuuVqFuhdDMR6UlVGo1HLvI/tKRUaXRqvqwida2FS+g67rpfnsqDPpyzd+xeUnk66XatVmSt+vp74XGr5EeLhqPdERSrLPZ/xmc/n5S/7ZixTxE1YW4FixeF9SWEqnN3k8H5le3OTyhrKasRkK2f18NMxxlBZcDLCqOJ82OjDEAa3vLZgnFNEHCoO7zNSS1ZVF7yDLjYuDeEelYpaYCwTXl2kNE63QbgmjM887RRd7STlgfvcLLvoExrnGojSXW3ic/I8x2uJ76GQuvfPtdLEiqlvM8l1KpCR4XFcefgwB4qcpz77Fj74kbt4+g03cc/fv4tqe4exsxQYKDwbp6dBQHpldW0dZ0tIuNU8z5nNZq0J3FielA7rs1i6nbhL3SyjmlIB1RSkjm0AACAASURBVBVaXWEGbZooCsCURnqc6GsIvQlrskBPLkLI3/i+u3MVrcz1KBvhhA/aspHGkJ0L1sX1FF3h22cJtNOof+tc6MqCsAZYnIjty3OwIOKxZE5JtNHgReJglrStNP9JlYc2EKiiPJMgvHPLl3zxPwO28TpjOtlgNt3C+VWM8eSmYiXzVLMZa2LxQDneQKuCs5OStQNXM1o7ijMHUBkFXt1bfE3NzGYZhcnJjYR9WlGMWUPrFbRiAqWkfCJo7tqmIYzGF1XzektwIVpZS5h3zPtU+5n7SGe9naiL3TpAN49dakdxeK9Bs1hmZfSkuUzjATAUOOORXFgh47pbbuOeE8f5pq95IQdGW+y4iq/58s/lA//wlxx6ylNZ33eQ9fX9GMnZOvUoxdo6vjpMsbaPbFQgJifLspoOKBY8YlKtMaUHllFaXSum73jXCui7b9lg3TcgXKCG+YjUdIuIPAU4UR+/4IV5FxN9wja1AEPxu2X3TZue01axPhYnXSNSAZw+u1ufEvttpFFievXAMa/22F5d+/4llnYq6GE+uGVimiAbJvhBLuQ1TUskTMUak5ORkTHGmzFitlHdpqzOMpluoX7GeOcsR/1ByknF6ijHKajzFCYj81MKX7Gzs4nImNnsNGOzxqFjz0fZj/cjrAqFV7Sy6Ejx2QqlV0ym5JnBJk4GJpmc3ktcEhOqsGh6LfOVTl9ml0rpChGf9Ok+gZgKjO5A0RXsfZO93fwsK1fvOYmeJXOtPnoZmFqgxnz0dbYuGjJCTVgubTwrxYixc/zde/47N990jP/htpu5+vB+MudYy3MmW9sYCrx1eFdRlTNsNWM620Z9FRZl1DvOGGOaWNRRUHSppFTD7CKtu746Tjt9tA7SOgRaE6cR3ZV/cWDZLS/nwB8Ar6q/vwr4/eT4KyXg04AN/Tjw7dAWfP0CUVu/RWjisIfro4dKu77TgbBr4XTfVzpH0p2kjix530DatZ6W9YfdBuHUu6c74Kd5DenX94g0edTIz6tjpSjJzJjKTXBVyVpRsH//foLnjWd1JUNdRWaE0ShDpQrOCX5GhsO4KTrZIit32DpzHFtu4ewMZy1uOkNthaumlHaC9w7xHl86fONJE+LE26qqV1LvHS4Z4Z6+/Oh/3g0D0BWqfeZkRGOeC610VLVesbacP9xNUMNc4HYbXPyeDkySbqYbPRMkar+uKVdb+3e9nWFBg69/Rs8FJ0DmGalS+Jwd7xHdYXuyzZFnfDK33HIDn3TT1bitTd78pjeTZQre4WyJ9zY0zNkMNxmj1RRbR71Dg/Dv1nPK/S50/uQ9dWPQpPWUDuZ9WmQq2IqiWKiT3dpDHDSXQUR+nbBd4DNF5AEReQ3wY8Dni8hHCSGr4z4EbwXuJmwl+PN8HGPZp+XqzmGkAr55N41HCQRPlEhhzNNbJmxTLb1Pc4f6HSaTnvMp0Hka8X+7j7TnY/ry0H1Wtx6auuh5HijU5RQUNFqU4NWTmYrcTIAJk+mE1dX9rK+s8eijjzIq8hAjHo91JYgFsXiZ4fx0vtLUOXJAbEW59Siz7bOIL8HZ8LEV3s2wfoq1M2xp0cphq4qyrL3SotdTz2rui4lLg5YRWi+z62ER0eX8cLGhg/g6aH99iZdFt0cIniV9dEZvthKh2rhX9pjHXXMybYSgSOCZGi09nFvUQNLnds3X7vOCeRcXLCWdExfMV1HQjCJfZ1Ypq/ueRn70Xp4pU84+vMahz72NRz/4D+x/8ZVkJqPwkInFVRNKEcbjKaO1EUrJiqzg6udFLT7mK6WygFY9wXySuan/jrbfV+cph98tc0yzb+l9PNc3APVBVb92STY+t+daBf7d0ox/nHAu2ilQfXPXycBeLKdBGg+1ZMK+a9EuWzEtIi2KM3jLeOYbWNSLgFik6Pomas/VL3Xevef1YNL+Etq9QVAJ/H8uIHiy3JHJmMJM8FTsP3iY2c4OWWE4cvQgG2cmiIHJzjbqPcYFV8czJx5hfXQY4z3TrSlk61gsVqtA9Jy6D1dVrB55GtYUWJuBjhCfI9kqRgq8ZIBDxIRVtLbCmIz+aZyLh0tGc49INcE+jQzmQmU39An2ZlHEEs18WV6gHWujLbwX74kCKssyouuZMf3BspahT3tJBWNfh23SrFfaCrb2xhnhR0e5/tbnsL7/MAcOrrC+YtDxFvgSIcwvWGsR9bVpabGurBdo1Jq3zkMd7GY5dS2N7rtMBVP3nvTddgfOPh6/OwDGeorP2k1zfzKhaxVCtw35ZoIulH0x7nqKbv11B42utbxwfzwU80WPN5hRVBYVlz5Bfk7BnnxCQtqaOA15rBffiZJJjGMDiEf9GG+3QSuMGPI8Y319DdVAxVx55eEwIHpbhxlwzHamHFw7QC4Zo2zEqBhx110P4rylyIWTJx7ETTaZbJwgc1OcK6lshS2nuOkYV06xtsTaGdVsgi1nYds+V2/V5/d2h8pLQ7h33mvXnEs1lLQB9Qm47u+mESvnFKx9Db3veHvFXvv+KExSrScKdli0Srppx+/LtPl0lWHYKGZePlHIycNKPQNGwyIRZzxWDX7lMO94z50cfsoNTPyIfWsr7MsNoywnkwxRAndoS1w1xpY7YWWdc6itWnlKrRlggS6IVExaJ936ShfapOXvrkZN6z2NpdN9V/H+qqqauu568FxOaLURmfuQ1wfOeV+3nXex7Nyy61W1WZG610jzttBXmHPuoYxKUSjr6xmj0Qhj8hDvxihr+/fx9rf/GXfe9SF2pmPWVkYUmSE3wijPGK1kYUMOEUajVW688RgA09mMg/vXyPwMN9mkHG+CD4LbVxYtLVrNAh3jbL3RR4m1VQhZoO1V4XuBS0O4J1hmrnU9MXbT3Ps0wmY13S7triu8ujRL6tMd0+4ORCmVEBfT9GmrjYDuaDsRMZJeGj0vDaQU6yoVnEXtIhbmGYQQIU/J6o0YtstDvPxV38Zb//7DbPhDrBw6xHv//k8YuTHGVeRZFsKNqWM62aHa2cZOJyFQknO4cha093qlXbeeukHMlr2PtOzLBlJrbcstNa23vsG5WY0qc3dR5xx5fmkwjxcT3fpS1UaVDkqHEkI0L6dTum1umaK0VKOOsZeSPmLq1aqqIV5T93ndQXjh98LzDXHzi1a5kz5Xb8tBLlBkGVkeqRmttXYF8RjGZDKpN+AIdI4plFk15pZPuomjVx3m4KGDuHKC8SXjrQ02zm6yvbnF9ngH7z2nTp/kr//iY5TjitznuMoj1lJtneGh+z4SFjJh8T7w6dV0ynS2zWw2DqEKyhnlbMJsMg7nxuPzeNuPHY+r5YvIPcAWIcqOVdUXiMhR4DeBG4B7gH+pqmfON83UCyPV2urntf5HF8oLoVla9y8vV9P4Yz7my68XvT3igJN2mO6xKHxSTTIdtLz35Hk+F1JeyToDndb3aGzk9akwAFAvaVZUDUiGV619jg1GclwOU1khXzvMQ8ePc2C0zaH9Ff/93W/nk1/wz/F+FVWDSlabpiW2nFHZGbkq2WgUAiSZulN2BG/fu0xjzsRy7iZw+t5nPJ7WF9Cq0/iu0jmBeM25TP5LHVGQ9dWdatIvyOoBtln10GrzcdFZuK9DYUETKrpvZXS372WirXQkq/3o69+1yhFz0bo3/R7aBATHg/lgEZBQkBLSb9qCJ/Dt6sKg4IJSYrK4TV4oQ5YbVEuMOIQSUU/lXCirE7TyHLjqSvbtWw2bbqys4CYTPvL+E7z9bY9wxRXCM265AacTDh8+yAs+FbY3Njl05AqOH9/m6U9fZ3VkKI2lmpwhzzK8ZBjJQ1GcB7VopoGGyTLEFDjvMXtMGV4Mzf2zVfWTVfUF9e9lsTmWQmGBZ+1OmHW1dZMI9vPtvOcyQbvppM9MudsuTQQ0EQrjpyukopCbx9hu0zop5ZCuoJ3XQeBQRaQVWCmdIO5qQmiGegOaQe0i6cyIk2dOk6+MOHH6DM959s2sjxwnH747xNEQBTWEzWd8mOGfTfHeU1UV1s3A2XrfSNvrqpnWU7qYKJYT5hp/3/voWmWpdZTeG9NKF1PFXZgi5dMXX/7JhrT+uu001EVXO6a5Nr2uT2Pus3KXZyR8glzv92bph9DyGrtAaMK2N4OShBAHIvWK0CzDyDzyZFMWb8mNJc9DXJzpZIssh+CxBqqW62+8gX2HDwVlyGdUpeW5t93Iv/pXz+WffebTufuuh7jrruOoTDl6xQGOHj0I6rnyqoOEQEaOzFumWxu4clJ7lsV274JHWlXircVbi7MhXLAt99YVci9s1mWxOZZCmHfQdBVeVxhnCOra3hkpUr/2VPjPL6gFcpR9ySml3WGi4MjzvPndt1KwSxsotXtjJoBDMC0PkjlX7BohpKrkptZwSblQxTlbpx3rwmE0NcnD5gRNr1PCBsd4VMIUm1dHbizGG4QVvvGbXsV/ecOP8/Nv/I88fNftPO9FFds7G2xsfJiNLfDmALJ2LZU9gJlBVYSNP/KVgxgjeBzZSvCpD51OQDNcQgX0UmMdrje1ctLzfdRA16KLx6uqatFlsa7Tey4XdJWK7mrlcBFEQei9tu6J6LMAAqUyj1O08OxgNqaZIb77eVJ998Z22/i5tMoT/gfhrQvH4yi1GDdHpN1PwAfFn2DBBM8ZMFKi7izFapg7mlZbZL7AmAKTC2M74ZETJzh6aD+iFlc5sCvc/+Bxrjyyxv4DB3jZy/cxm1VsjSecPRPcGctSWTl4iKqaYooRame46Tbl9ga5FFhVimIF1fAeyHJQj3PUlopvLN+9wuNNXYH/JiL/KCGeBnRicwBXL707SaSrjTULF+pwvBntF9418VRDWF+jLFwLc224q/nGzTjSqJBR44u7ncM8Znk8H9MXEbJcUELkuHA8NLYobFJPmxRNOvVA1A6XMDebu37jYYOCednTKHOR6/S1qa0SwhF4MWRGUEqe+cyreP1PfDdeTlOsTFndZzl0yHMoP8MV2UmyrTs5c//tjNxpxI6x0wmuLKmqHaqJxajgqim+8uB88IUX3/Dx6hbdD7sCvHn3HatjoW0s4dpjxy6Koqnn1q5Xu6T5ZETahvoGw3NZr2m/6Zs3mmvkyT1pH2G+qYZpni+1vE/zI0s+dL6n3mPh0xicMX/1w1W16aNx56a0TgJVGTp/KI9pLAURh+gUZwMfnq/kZHmGMEJVmEy3ueKqI1hbodbhnWdnu+Jd7/ggpx7dxFnIMkMxKgAhMwWiGdPxjFOnNhmNCpytKAyIt7gqLGSyVZg8VR/mp1Qd1DSpRE+mPaYLH6/m/hmq+pCE4Ep/JiIfOt8bJQmu9JTrrovHFrW7mnbw2uG7hZb7VZ9m0mjXLJ7r5KX5HxtcqpkvUgptTwPnLHNOczGCZfwen9GyPGrtKi7dDsvDARYXM6V1FK6dlycXExjKjnbXcKSmIPcWYcxobYotz3Lm9HGm26fYLqccObAftY59RcG2m6CbD3Bmdob1a54L8lQqhcIrZrWg0oos94yKejDMMkycm8AheYYgLbqAFtXUpguW0TNpe+i2jfRdRi12NBoxnU4X7nuyI7Vo03bXvGd8rVhEob3Y7oCF+5chFfJmyfH2LmZRaM/pk0WY5JyQumk2eQ0zqguDjKmvTydcJaVgImUT86QGrRck5caRZx7Rismk5OzmJvsOXBker8LBQ4fYPLERQgKrZzKeIhhe+jnPZzRyYfLAKoJQZAV54Xnk0R1MLpx45CGuPHITqysFlbMgFTqbgLUoGc44NIthEAwe1/Rv0WAt7SUel+auqg/V/08Avwu8iDo2B4C0Y3N0732Dqr5AVV9w5MhR6utbrn5NJru+vdmi+1yKbuNPr91tsij1uIhaYbynTb/U+45m4HxVHw+uTW3Tsc2bp5NZceCC8BK6oXVTjrVrraTHui6ZLb5a4nMU8YKqMMo2sX4Tg3DDddeRiefIwTVsNaZYFWZuEzEzRloi2xucuf+DVNMtqlmJzKbMym1KO4XKYWczqqrEViVVOaWq/Xp9FT7ULmBxUlN9vbVaUjexPKngjp++8ARdwRStPVVtxTRPtbonO1LLLS2T9652qUsVh3Z7SdvHuQa6juv4eS2xWWyT0bsl+Wh8v3PNPe2P8/dafzf1R5urmz1NBWpLFWoJXV9Rh11QT2YEA2RScdddt7M6Uooc1tcOcMUVx1BL8JxzHqxgNKs38/Gsrjm87GC9Y7Ra4MRhCsPJU9t89CNnQCpuesY61163j2d90k28//0PB23PObZPn8JPJ2j0Z7cWdb72/Iqaex3PvbWKeG/wmIW7iOwTkQPxO/Ay4P0sj81xXki1MudcWFav7VH+fDwgGsGhbWG/mwtlyt2mWnyvGUs6GLQb6nyHoHZHi8In7aDxfJHlxAnTcLxtwUR0O2hTX5GeNIHvFwNZJmQSOHjEkucTDqzuMFoxnD07pZpWrKxmzGY7lNUEcTNWM0+hMNueUVUVuv0wZ+6/AyZnmU22mI5PMds+zWxrh/Fkk2o2YTreppxMKMsZ5az+lCWTyQRfhzCwNhH03jbhDNIynAvdd9FXD+nvixgR8glHWvZ2W+xe057g7tPUd7OWUlyIXtmu50VaZtmz2sdTXj66Wobf3b7UTLDHdi/hk+cZ3loEhxHHLTdfj60q1HvKsmJt9SCZWSEXAzjstGJkDL7yzCYzBM/RKw5yzbVHkSwP7dY7xIDzY7x6KuswuWE0WuHWW6+srQXlwftPkWcafN1roe6cw1UWFzfSbt7R3u/t+3homWuA360rPAf+q6r+iYi8G3izhDgd9wFfda6EBHo7bVfrjjBKcMerfzcNuGs29vTr1JOlK1y6naLvd/MdV2tSbeosXte3yGohhgwghI1FvPeYvF4CbpR6XraVzzSPKVJjt9WhFTKjgEGMZ2Q2yXKPrzKuuvoIo6zi5JmTrO1bQ5xHK0s1KzEY8nxEhcXbCt06gd+5lrEXcjdCiorpCEQLXFaS5yNkJFBG3j9DckOW5ZRlSZY5REJgNDUy9xrChbqT83MJSwfmrnUD88BiFxIt9MmAriXaLnc9mdj8bi/u6XqdwdzzK9KazbnYTh9nftv9VRsLMm6NB4vrWQDmLEWk+1Ie3zc0Rrg3WYHbyHjBO88ozzFYhAnqNyHziMmYlSUra+t45xCxuHKMm25htze556P38Zd/fjtf/ooXB3fF3GK8UBQr2NIzGhluvfUGTp0+w10f3eGqq9Y5cERZX1/hoYce4r77xrzw05+L8w5nKzSvd3+yVXBCEMECmWZInX/VS9RbRlXvBp7fc/wUPbE5dk2LuVDqvnRPEOTxmoY/99o0xr5BoAmq1aPRdYXlMgonRXqNc66OaVGL544AXrYQayFdP/cQiA1WjYD6VryY9L624IqTRumzQtlzATIJZmAdayM320FYq2JGyvvf9x5uuuUmHnnwPopcOXlmk52tHXI5ypt++Xa+6qs/icl0SmHPct/dd3Dd8z4ddQXWl1S6jXGrYXegqiK3FslyVlZWUBWc9c2uQV7mHKt4qeclEm2uM/h16zEdHPtWpqaUlrV24d092dFtm+3j4fsyi657zJAoRQmdMydMdsnHBVZru19EwR7f3+I8UtpnAw1aDwQL5UjcW3Xu/tloxkZwbkKWzciLCo/HWji47xBGC8iFanYarbbYOHWKX/3Z3+VVr/x8XvElL6TIMra2Nllby7FiWVnN2NmaYGeW7e0KY0bcdNMRHOBdiWQFV117DdddV2C1Ai1Qtc0ak2BBKniPViXkefCSEcGYvfVzvySW70XNHRLNN5mAayZSNER3i2aZcyFIVryvTzinmlxfp+/js+P/rikbtaZmUYmWvVp/639mmslEoBUGIYtCL3ZQdL74ow6C1C5XzFPU1OZaUYTxFUU2QshAytCBVVjNJ2S5RcuNEADMKjfddBOnHr6b9dUDHL/3YxxYPYDdcdz/4MO85nW3Mt1W9u+7ApMpRkrsxgn8wadQZCO0nNWcZYYxOa6syFdGlNMdipVV8nxElmVULgxYWZYjI0AE5wySa93AI62VUVVV46ee0mKpkOgGuErfVVwI1g2AdTkgpWTabbPtGhg+4Uxv29f2mpKmb51vPur/fXd0FaV5ftPBRpJUuveHJ6T3oVpvNNKv7DR8vYFMcvAeQSlGBvwMYywi9foTn6Heob6inI0pJxscf+BuvvYrPwPxykqRoc5zYN86k9kWgmc8LvGlY2dnwqMnZqysZ4gZUZVT8pVV8HDm7A5HjxxETIHicGpRteArDIbMmAV2oqsQ7gUuDSdgaU8apUJ6wY83OZ52eOjXXroNbTfetslO0hm6E5tpWulz04ng9NrWBFX9PQQ1mgvsOUzr0/UqIbpUxfzUEfFSd86QJ4+amt+XApGMQnYY5UKlY1QzRDLuuucObDljvL3FeMOgPmP//lWe8+wbEG/Y2Z5w8tQjqDpycUw2TlNNd7C2RH0VNmp2Dl9ZvLOUkylYRzmdUE5DoCTnK1w1w3vHbDbF1WEFvPdhFWztYuq973Wh7L6PrktqejzWf3rPY4jnfkkilscYEwZsCfHaY1sM/WG+O1HTHuvwFcK8/aXutTEGS6pg7YboD7OMRp1/QqKND7s2d7YiO877UmjPeZaRZaYZdMLGFjH9EIDPGFNTeVk9kdqmgXJTMSvPkGUlmSYLBqVCxAKW6c5ZxE254tAhcgMbZ87w4P0Pgxd2tmfcd/cZNk+XFLKKIBw6uML1T1tjdWWESIZqhpEMVc+BAysoHqcWr6EdB0PFNxWmzRqZYF1WVYVznyCBw/omL7u+vd3ROsYNSU3x7qgesTDS92gr3cEk5qO7sCpE62xvCJFe2yugNImU0fFK6AryNtqWSTdeSEjHk5uwJDzGFhFRjGQEZtWTmx28rXjf7XdQ5CsUJufYsWOs5hk4OHzoSpwZk48KnHMUI+Fv33EfDz30MLkBbIXd2USnU6pZGYRpXKWqYcWq8R7vLFgbYmhMx9hyBt5hyyl4W/v+2nkgMq3jWus8lEAj7DvWXJfq6gruSMuk7/JyWMSUtjOIaxxCqAnThPQV5kpBYrVEDyXtqg6Lnf98NPh4n5p+q2iuTHl8tDAJHiJQr7lI9mpQVaR2sAkhux2GsCVeJsHrZS4DYlsAMRmYDGMEY0IsmRAREiq7yerKFCNTRDOkplGdWEo3wdspmS8xtqJghZ3xhH3r+xCf4SyoLfjQ7RvY8Qpu5rF2hlePdeDwqMLWZhDUcVW0YBorVL0D5/HW453i1eBCcKvaRdhjhMaFc69wybT8ruDqmi2q7SiE8Rj0a/1dpMJ3Gfrc59K4HkAdL3txl6a+CVToE+SL5Z7/T7qdzruf6tyN0hgTNHZDmHfAkzcLv6CJNCdKXmT4sqQwU8RPQDyf/pKXBW8eZ9GpMtmYoLrFvsOKKUZY8WztTHBq+eyXPZUXvOB5ABSiFG4W3B9nM2wZdm4KFkOY3FKto0dWFl9V2NmMcrxDOZtQjsfMJmO8nTKdTihnM1xZNbs7Oeeo7Kwl0NMBPw3I1n2P6TxE+q4ul/ADrfZk5gpKd8CLg2Ljtuu1WXQUNeGLRlOpLIbhDSeaI6Jzjn2eSW0C4KVlM4TJoj6aaLFfK4IixDhNwZJRQjwmGCOmIss8eWHIc3jonnvIVMh8hU63mJw+zaMPPEymwuEjh5BMuPbYtTz44H2srQkveckN/H/vup+tsxPUZ5Rl2BLTWYdXS5a7JH+1I0H87T3e1Vo7STC1+L60rUjuFS4J4Z6aeWkD7PLY3fgizf0dzW6ZaR//L6NlurRNyxRuWQRxlahppRm/N6vokk2vL7iiZe4N0NU+Y76yLFohOjdXmU982bJidZRhGOPV4r0F8hDhcbbNbOMMP/t//w7VbAXvNbhOZjlVNcOWjj/+wwewM8uHP/xh3va292HE41wVhIgt8baismHewbpyHotHHcZHl0eLnZUojrKcMptMwZf4+rx4xVcWnG/CS6jzbf94nS+17wr/rnaeBg67XFwhu9Zrd6BbbunSOt/9fi5o59M6J9La5azvzmZxUf1p+rZqa7CZT/EGGibt5+01LvP6iK6OIq5W6Q05HvFbrI4mFKbCuxL1O7hqg0MHRkg5BrfJ9vgB1Ey482MP8E+33xk8XLSiclMOrB9lsl2SZ47bnrOGd7Bxeoa6jGqqGDIy8RRZichcqYka3Fx+1PvJqasXo4Y4M7Hdo76havYKl8SEaoruBFpXg+/GcxHmArjrGrcs3d0mM2L6fbFk4uicao9RU2wGgHrSN+ajT6j3MTDdzjovQzADW2WqV7UicVI2WiV2bgEZ0KoiHxUYvwOZJctysIbKbjLdfhg3nvC6V38htnQYH7SR6XbFZHuCYZUv/7Jnsj0dc+z667n5Gas4Ow0cuq8Q65CsgKrEZWFFKqZeqVuvJlYLWoRJLEowRY6tZogoxUqGtQLOURQFznkgQxNeOdZt3zxMnxIAi+6mcWu+JzNaNEtyDNpafPzdTPrT9oOP58/7uZ3f8xa52x2afJ8/M81jXE8S0zPxnftFq7iZWKWt5JH0sbD+0wBTjNmhyD0GT+lK3v3uv2Vn8zSf89mfx7TcoqrO4nSKGOVZt92I21GoZnUE1JK3/sH7KEbwkpdcz8GD+5iMHUU+YlpWiGRkJsPZkkOH1nD1/IaPfVB1Pl8cHScaq3Y+2a1hIwbmNbA3uCQ0d5i/uFxMs4uSyHw/VTKDl/mKTO9943nS1dpTAb5sQjSiy63HgSNO0DU+2UZRKkR6tPtaS89qXjNOmJ6rcr20/bbro8EywAK+0Y6895hMMBK49cCxt7X3MHGUkRklE0MxyhBOU+SbqFVkX854dgY73sBUW/z0//Vm7FQxOuL0iRl+Z51qPGPfvoLKTZmMPXm+wspq0AHMSPBV0MRd5QlVayjLEu/KMNGahExQHKJVrcWHCaS4OXA1G2OnO+BKqnIWrAmnqKvAWzL1DtgiTQAAIABJREFUTb3G58R3FN9bn3CP7zcOznHjjiczllFQEd22Hy3Hx7pH59xm3O14M4OUOjgmVxImfOvYRjF/UfmIoQOMSBMTKgr5ZuAO5mh4Wnocag0pzCeFcAOKyBZwNuxl6j2rK6vc9tzn89xPeTFSFFg3Y2dzG7vjmJwZ43dKdk5t8+gDW/zdn9+BcXDVVfvY3JiQ5fuonLC5PWVaeuIqW+tCoLqqsrUnWr3NpZpa8Qtujh5t6JkQ/C+lcSLF/AlAy8SZ+u5EWvzdaNxem5WreZ4vcNxpw+/u5Qn91E96TXeyEsJg0o3Bngp9mAvzC+Yz1XRer+/8pwma1pffmJ/0fpHoSWFZK3Iqe4I8t6ytGX71p9/AmvFsHb+He+74KF/zVS8lGxX8yZ/+EVdcscKP/8hfIW6Vydgym81QpkD7HUTOVCShSer3EjUv5+ZceiuPbh5MLU6cBq+BYK7aakbc3MT7sFFxqO82d9tH36WDdtTejZlvZvJkRlAsAtcbvaEiYn/oUlDez6MOdrX8i5o3CbFd5i1ZG63cNBOI2my+AnPPkcIY8s48V6s9e48kAzVaL7xynkzyECFWCzIMhRmTZxusjkqmk42gIJqC9fUDHDp0lEk5YVZukIsw0hHrZj9ihbs/fC/r2QFuvfl6MjG85DNv4su/6oVMywkYyApFzYxSZ8xciZgc60DyonFmaKxlMqz1OJ0zspFVSueQmnL6tO9efFwSwj3l4/qEq4ggfi6YMzG4au4VESuuG+QrFfrLePbuc7vXdTX5KESWbR23G7oakUofRTPXgdJ8mcjlizSxynvryviag8wpp8fZv+6w1RQ/Ocm/fvW/RmQHVrY5dPUhDl15GMmmPPsZL2Bnw/It/+75nHjkNMIIXI4Ri5HIKfq5IFHbaOhBGLv5AOBdS8jaylN519wX32MQ8BWu1tTxFtBmcIiDufMVcU/Y9N0450J4hLpNRC+Zrll/ObhCphP2feVZ0GprdK3YZX3g8aBtNSUUDHPKRCR4thVF0Shy3UV6sNiX0t8hZk593IBShS3zAPFT0E0ME7yt2LdvHw8/8jA4z4P3PkCRgbop5XiLarbDZLJNVZWowrOecxN/+Td/w113H0dxbE/DKu4sE6bTGWXlwvyC90ymltnM42r6JbRjRX3wnBGJwcyCReNVQ3TWJ2je55IQ7vGFdymTKNTFJ0G/ai0xBvVqzLxasMfBoFuhKd/eRbdxpZOoVVXV6c+vjZpSJmbOf58DvvO9HoKg0XkS0S/a7HaUZVnYjMAYcjFh0jEOaHVem41CEDIDhoJcStbWjlMYZZQZzPphrN3gzOnjFJMR4/+fvDePkuS6zjt/b4nIzMpae6nuLgANdIMAiJ1YCIC7CYoURdKiNJIsyx7ZpNYZSyPpeMajIcc+R7Ys2SNbQy86pk2RNGXPiBRlauGIFEWRFAmRIPZ9a3Q3utFrdXVtucfylvnjRWRGZhcWgmgekH44ia6KiozIjHhx373f/e53z7T5/Y/8CflGxtzsFGurXbzQeCnpD3Lieg2p4lAYJCXeFde/rBG3wQiX10SIEQ2RotuNcQFWGib5fBBaq3rtzuSBTukMvkjWVhcN4Qqv0JmQoJ3A4KvRXjWZWi7AoWL2uz+pCqXhHBdQO+flq/ueG7W+0JhcOkoHZNIRCSwwVzBiive6kYiZLwxb9TNRibjOlT4IPP3x71pxbigwfxE48VI5nM1QHpToougQqVD675xh1+5FsjThG3d8HZ90YNBGWYPPMjZWl+n0OuTG0E37vPUdt3DjrZfihKBRnyHPLL1uwtMHNmi1crIszNm1tQFr6wnO+8IxKSJ6ESAZ58D5kAHAl6a1sC1ODL/D+VpoJ8crwrjDuZz06u/DB7oycathf7nPVmX/MF7GPonZVi/0pNEAhlrt1X2quP/kjXopYa8cC+0o+OnFglScQ2+xOEnKBJoZUcmcRhqD5BTK2+ARiwibG/rds/Taq7jc0ahN8d73fh95nnN24yjNWUm728ELS+4Sen2DE+NqhEpGeF+wNQrxm2FzDOsQfsT9F96HkmvvxzTxwz0M4kq+gHxsnmHzcD+9s+Mh/DBCGOVOJh+MchGsMmrK/b4X5AhGiqPnsmS2yjd5X2DBjM/9b/U6bJn4L4x86FNK4JeXMgEiJAqVlEipCXrv4QVBY10SHLbnGuNMmeI1JE0UzemFx2NQKiVSbWpynUaUIJyhXq8HtENYhEj5iR99N7bXZrC6Tv90l8P3HWXGaB654wCf+uiXabg63hv6gz5ra22efuokrY0Bg67i5LMt7rpjmV7bY41kx/Ymc3My1Gl4hxDB6cqNwTlBaG0pcAi8JIBVvtKLwYlQkP7fm3GfHMPkUMUrd4wXKD3X5K7+fXL7VuMc+AaLDur7xWcYn3Tj4eLW9MzqGKKREx5Q6f2E9xZGsjhmwT8Z/jz8LoxyCUN+v3WFRwOxVERyA+3XyLIchKfX2UD018jWV9CZod9Zp93tIuueXDl27dxLq9Xi0598ml5fkiQp3/j6syAMSZKEnqpCkub50CNxYuSNjN0DW1aanpswGuKORTd5yajZuS0WBunD964ylZwzCEY0y63u81b3+Lkite+2EQxzMKjOjWv8V19bwTNVw/7tXItzIBM/IkkKX7JCtn5fEIkDEMOin8lj+vAFh595HIN3o+RlAXcgQKgca1aQ9BGk5FlClqX0el2QnnTQJk3a9Hub4AzHDp/m63/1EJ3NNje85hJuufkS1lY3MZnB5gaTWu696zjLJ1t4b5mdmcZain7CgZknRVhspA/9jvPMDL/XqPMVRXFqRVtmdEUo5RD+uzLukw+jEIFLaxlNUFuZRFslYSYnRulhl++vaqpPejRl4qr0hssEZZnkq+4/ghpGD9qLrYYUQuBF8NglBS+88NKl1DgHUmoEimhCXGhIFSygEJxFRwotFQKH0s8ypU7SiCy1Wg3rDVL02DhzhChx/MY//ATZ2gbdMz2SdtCz/th/+jqDluXWm5dorXXB13nDG5YwicPaYnJ6ibMS433wSCxDb0T6YvGtPN/SW1yp5+7AWB96BQvAW5zJhnxtaz0Ux3RmZLyTPMMUErZ2ohq4XCjKPEApr7rVnPpuH+H7lrkkNbF9lKib/Lfc54Wcjxc69znvHRqr6nPntlxcij8ixSi5CueSAsaewwrUKktjKGQhUeACWwwDrofSPQQ5zloef/RRBIK4XsNkKfWaYtDdwGUDfG7Yvm2O22+/kbn5OdqdPrkF4wTOeeI4pl6Lufyy7Uw1IpS0LF1Y4zU3bCPw2UWY60IVzwIIKZFShYhFiPBsyEDnFfhhO0ykHJuv3n9n5uULWiMhxMeFECtCiMcq27YJIf5SCHGw+Heh2C6EEP9OCHFICPGIEOLGF/MhyuQLgPEBp/VSgAoXRRUVbd66YYjmRTDGw5WycsGqVaST8EtpDLaCaAQK76phf8kUGe8Y74wtYIgXLp4q6Y6lBPFYW7+isk1IjdIxQhZlB84jnUXicMaOLSAKFT6nDJWhkdBorVEyo0ZC7DfJXYr3GdKB8BJnE1xnQPtsm1/91Z9g0JN85Yv30VrrklnHe3/kKkTkmZqxTDUVHsHdd51Cy4i4ViMq+rtmsoaQGu1MCLelx2JJTV4keUMY7ZzDIhBSooRBikJeQI160oYkqUHYkiaZgzBk3lAaDVk06h7SYa1BOIsmHA8/SnJPNi35XhveiwLq2ALCLOZUWfWpRKAYVuf+Cx4fPzZXS7ukCiilpFeKkrI4rK1woBQojZcapMK6Yq6K8Il0xZGRxWelsgBJKUM/XldCkoH2jCukCMI3Lai1Gdp1iN0K07KF9BloxfGTJ7j8istROGpK4WzKoL9B0lrjwW/cx91fux+T9pmfn6LXHZD2FQ/de4THHzrB5mY75JK04oprdjG9EIE01OqO+e0xKo7C9/KCI0fWwYdCwJCIE+jCa8+9JvF1rAiJY+VMSLYicdIWz4vDPE89zss5Xoyr+QngnRPb/g/gy977y4AvF78D/ABwWfH6OeDDL/aDTGKlUGTVi3lZ/duLrTx8rlB9Ui6gGtZPshKC8TiXGTMZEj/3hxglE6uejWT0ABk/WnAkE4ZKlhhncR4RFrgaNTQCI7IwMZ3HsYyqhwfJ0iC1m2Tdk2yuPkskazx7+CjHjx3Be8HBQ3Dw6WfZWG+htC+S0RInHB7DTTfvxZgMKQSBhaZwIh5+ZueKJKcfVY+WydKQdB1dw6q3PUhTijb1hdde0PisGSVWK4srgMvNEKet3v8qFl/mYErv6PkK2r4bx0jhcetwfizx+JIgGDE2V4evieOUSUHH6HmxtqgSdW5UVEiJj08weCa476Pje0JVtkehiL1G+eDA5eRYcoSMwmdUXUSUg3ZEWuFMzp49e2nOzWFEhsk2GXTO0Nk8Q1Srcd21r2Hf3r189a8ewtqcWi0mimucXBZsttaYnZmj30tI05wsTzEmLyAWCXikDM+E85alC+axNqVer4d+CSrg7B6JcWCL5OoYt995ZCXyP9/t9ar36nmH9/4OYH1i83uB3yt+/j3ghyrb/4sP4y5gXhQt917wg2zBd530OsawRs9ERroy4f25NMHq+2HEiT8nTBSlINNI26UK64yUF8895gsN51ygA3pLKRngXPBGnTOh/ZYccYafazHx0oG0OOFp1OpE+RrN+mGmGy3otxHSIM06pttm/eRBfGeD9RMn2bM4xzfuugsXG37xH72WpYvnMN2MlVNd+r2cLMuw1tPrWfr9bvEFBSqKaGWC1IdqTytiVOldM54fAUaNjCuf3eGxxX7W+3OMtLU20B0puzXZIfY+2SGrvJblYjlZh1Ces2r8v5tHdZGsDu9HSqCT1+flPLdzIXYSQ0ZXeEbKvIpSAkXIB+AdSlLM41GyFcr5PIJexnJYYSXBExrMaEHBtGKUS6KHliso1sB38GYAIS2PijyD3iZZr0vSO0vSOoPIe6ydPoE3CdsWmvzAu24CbUhcwtSC5CfffwOve/NV9Lo9hJPYJCNPPM6IIUNmNN8Ea6s9jE0REvIiWsWH+ZlYiVd1PCMVSydUoYETHI8h46dy/87neKmY+y7v/WmA4t/FYvsFwPHKfieKbecMIcTPCSHuE0Lct7GxPnwQtdbDwh1viuShH+f6bjWJX+yFmvRqqkah7PwyhF+GHmAJj4zOVUIlL5wYqVziMuz1QXNiyOEXItAdPWPVuaUgkVIqLDpF5amTAqsEQklkPuDYoS+i/CZkXR784uch20DmGXlnmab11Psxn/jw51g5scL33f4W2p0EYxwbawmf/uQRsp7k7EoLhy/oj9PoeBYd1dFaY6wiFzWcrAV4rOKVbOWdCzFi+WyF/zoXQtOxyKrYVyGGPHdr7XC7KxLO4XhFQ3DnxozbZCT2rcyLV/KYjGafK2Ksbjsf37u6WI+d25eSEMOcaPmHLY4yfl+qBj5Ud4IVHiNKWqUkkhHKD5BsIsUGsc6pRaC0J22tg09weYcalgjHoLUZZDEGKQwcZ46d5onHHmN5eZkjR44HiNEMiBoeLwx56rApDHoJrc2UXi8DwJhQS9Hr5wwGjnqtiXNhEStlhL33eCHJLDgRja6Sl3iKtptU7tcElHs+x8udUN3KbdjyW/hKg+xtRYNsKSXYUZWpUkE8H8Zhm/L34jjhxC/S2E96jNX3loa8vGlVIabqMeXE8Z7PW5KVjxFutB+yBbIsQ0pJLY7RE+H2UGlOiiKaEDgTvFthM7TNqNNFc4BXv2oR8hzf7vDJz/wJxsT84cf+IzbfYGNtjX//f32SH3zPzdTiGJskNCJNMmiztDTNO96xi9RkNBo1HJAb6PUDdTGKGgihSHyE1w10FA8XWKVHCWSFOOdaVXMbMArxnXPjMBPjHqlzBlVZwMuFYtI7LcPdsshJUlwfxr327xVYZjQfKfI9DDH20issoyh4KdCMYEtzIBxiuLnquYsxCFMIgZISVdRiyHMev1FSePje0JV6mDtThdypEWAlAbpzRau6/AyYZQ4/dR/LJ45g8xTb7fAff+s36GycpLu5ik8Tks4qOs9hYNCJ5NCjR/nCn96FtnVqWrFn9xJpKuj1E6yBUyfabK6nHDq4Rq8tOPrMOsefXcNah5BByEzrKZyLWV7uEdWaSF0b1tyAxFoRlhUR4UWonB+rCxAjW/WddDVeqnE/U8Itxb8rxfYTwEWV/S4ETr2YA5bFSuUYTlIlgwa0CqF9SYccejPCjb9e5Nhy8osRFlxdPCQjrZhq0caLeoCEqSSTCiNtLVopIq1Dl5aiArOKyauCYy4ZNbKIlAaX0fBnmfOPYHp3oljjNz/4AZaPHUY0avyz3/4XtFeP8I63vYluK2P15AY/8oNvw8mcz/7x3WyeafPA1x9h+fAm7fU2US0COQDpSQYeh+KBh05Qn4lwypMbR9fVyYlxeY4Qgkg4vFDDRNtkpGOtRRa8cyrXrCwlF75ousGICeWq+HnF64fgHVjjMN4RHqYRK0b6CWExey508d3uvVcj1q0gqHIxrHr33+r3FpX81mhjYYwJ1xlGc75aMKiVQkkZmF1bQmGVA0sJSo76o/rinlmPzC2Rd2gRCAWRd0SuhfSHmGqsUYtSrrrm1ezeMY/PuuSDNvMLO1iY3UnNeVaOPUE+OItLe5w5fJoHvvY4S9t28erLdtGoaRQal+fgLFP1Gs4n7NodEUeSzfUzdDpt9uzaxq5d20JlqRCkmaHXd6ys9Flfz8BLpNAoWWNtvYNFkziFjxsYH4CXqpyxUhOJbT9KfJ/v8VKN+2eBv1/8/PeBP61s/3sijNuAVgnfvNgx+aCOFQoViYhvtZfjc51n0oP3jB6cSXmB8fDxpXGGS8NXnj+wBHjOm116NGXpdkg2DlD+BMqsMz1TwzrD2266hT/69KfIbZfuxil+659+iFZngFvLEZnhxMnT+Fzz1rdeR9J1RPksvY0eZ06uM8gytGpgcoWO6mQpvGr/hYS6IwcKrIwRSlKPYqQMLJ9J77ucvNUK4clFMrCERgZoyFoqmRcFK6ZqpMry7eqCvtU9sdYOsfnqOb8XvPfqHJViVDyH92PV3eV4SXNUCCh0CstXqQVPBYIUlfM75wIrRKkhO+f5FpTwmUJU6ifuq5ISoSTWW4S0SDIitQ7+NEq0WT1xBOUSZDbgsW8+QOvUMnlq+PH3vZ8kSXji4Qd55qkn8TanPxhw5JkjPPLgE6yvtdm7dw9RJHEmdA7zJqe92SZLDJGK6PY22bt3F1PNCKQFERq3W+dBSjY2B0ilmF2oobRCRxHWQ5YLvKyRO4XzCqkKvStRiWTLVB7jEPArApYRQnwS+CZwhRDihBDip4F/CbxdCHEQeHvxO8DngWeAQ8DvAv/gxX6Qkv44fLgrkgND3MoFzFmJysf2E1/huTz4se0B3xtP6IxUCIMi56h0WsKQIllWCkKp9Pbc+nml4JUl0KBQoYBDqxjlIzChTNlKKhEJSOXJpcfnFisKLQvbZb6+hswe5bOf+SibnRYyzfjIv/hX/PnXvsLP/PxP0V07yeDUCu9/7ztJ17scOXKgkCA2dLoZWgrWWyl/dscZtJqmPjUTPBFPaKZNxH33HGP3RTPUahHGOzq2gRSCSGlckWQWMg68+oJFJFX4n3dqyHVXOqjjocB7gxJllWUw8FrKEbOjnOfOoys9cUcVu5XooEi0BeMS4CNRaN8YY5BajRm27wXhsDJxKjyhkKZQVSx7c241vvUFLZygatxLTZ8ysT2ERgmGvpTF8G6k0FpdWMr5PL7YBHhmWFHOSKfJ4RHK4X2Xum6j1RlivYn0KZic1vIp/KCLTwzNxixT07PIRkSabrJ9YZrL9l9Knlny3LLvkku4+aYriesx4MnzDOEkLjf0Ox1cYsl7jjwJTBipQyGgUDbARQV7SAjJ4q7trG92mN/eQOpwWaSU7NqzQGo8VsWgIsriJDwhkep9WC6lGAYvk87Q+RwvqOfuvf+J5/jT27bY1wO/8FI/TFnUIsWooexw5fMghRzqh0w2b/jWxgSzQIxCzjB5KzegoHf5CXne8Nbnf4DC5/cEcosg2DuBd/lQsQ9AOUlmigcrkjjviQChHVPOg9ygaQ+QbZwkSlrs6q7T7K7RFgk//3/+EmcPPcXGiSNkSUrvzDq+m3F2vUVc1/SSPo8dPMar9u9no9NC6pxbb5jjmZU+Fyw2cE2Dzx1xvc6hZcP+ay6lGRuQEuNmsKIZuO1SFYutHuGlgNSjDlHeEzR/nA+4sCggmTKfUEnEhvush0Z8eB+dx8uKHITzYf0WIrQuEyPWxcj7ByUlXhUhfgGtlfDPc80RIcRFwH8BdhNW5I947/+tEGIb8AfAJcBR4G957zdEOPG/Bd4F9IH3ee8feN5J8DKPEl/33o/Noa2imW/t2RgxzqrvLSWuyyrTqmca7mHo01pebyZofqJ4mobURxgqqA71ZawLNRAuoeZa5NkZvvrFP+D2d/4NdKxIki6nnj3C/LYFdC3mitddQ1yLSZM+/dYGIh0w22ywvraKshH9sx2eeOAZXALzuxKixjSbGwPW11J27pjhzOk1lNA8+2yLffvrxPEUWWoRUpENegipEcShFlxKziy3GAwcCzumUZEO8xrwXpM5jZE1jAvdypSUhfxCaP8XdGfKfFQw8t57vBvl3s7XeMVUqJbGNlZ6TKBq2NVoi/3DBH+OCTyJxfuRmM8QN/TmnPePeRnVTkqSwhMfbnmOb1JJnhT4miAkHYUvK+5CAVAuBVYIvPDEUQhthRVI75FkNEQXWTvI0Ud/j5WnvkFy9DhHH3iMq266jWj7ErPz22mvryNSi+87dO7QNYGRCc3ZiEhFKDHFvv0XYLIc2zeYXBCpae5/vEtuQBUYYupiDhw6xY7FRmh2IDXtJISdUscIqVAqGmq4jNUKSEmWpEMudvX7P9/9rnp6WzGhtjpWaWyMd5XPUL1Pcqy14QsYOAP8r977K4HbgF8QQlzFeajj+HbGVpDLeTjL8KfqNavi5+NGv1LYNPGMDu9f5WOGhLofevLDZHx5/5whquXAGqdOPM6N1786GEcJJs+5cNtO6s5x19f/OkS2LqE/2GTQ2uDz/99fkiYJ0kWIfkBWFhamqdUjmtE8WE1zqsH2hVlaa126m4asZ5muOTqtAY8/soKxgtxaBj3odVzBXRc4Lzjw5Dq7FncghMKY4NUL6cmswQqJE8FelVW4wfj7obSI8+dCut8JqPAVYdw940mjYQGKkucYickM/fN4Zc9zPjvE18PxK5BBsU0SPFJdLDTlPtVO66Nzu8prdP7Swwye7ohloJQGFMr7ou4usAO8sAifoHyXWG4SiwNM+TWWl09jrOfjH/4I1175GrZfvh+jczZWT5C3lsnTNi4b8Psf/xRZv4tzhrRvGKQ9BrZDkkv+4LMHWd9IWTmzStxs8bY3LSC1x3qFq9Vw0W5ed9O11EUfK2CQKVw8hRUSrePwQGo15mULNdL9ieN45DVWoJESlw3VxSOjOzTqvoB0/UjVsUycSymHBmJ4XzzD+1CN3IQo9P79SPr3hR4i7/3p0vP23neAJwnU3Ze9juPlGpNFQTA+D4caRd8yrjuepwjvHWfeBGqqRKsYTOm9eqwrCtfE+HMnvQ/6KgXOU5bp+wo+732GEik2O8ugc4xkcJpL9u9h1wUXoLXEpinTtQbfuOMOHn30Ed56+xvBZXTbq/i0R2w8b7n1Wmw/ZfnEaQatDsJBs1lns7XKZ/7wIdqtPlIp+v0+6xsJR4516HQds3Mz1OvT7N+3OJSPbk43mJ5uhKp5JMLX8NKhohpHj26UV5ncOhwxjlDRrbUO31+Gyuzw3UaOy9iiOMEsO1/jFdNmT7hzk0NBKGp0UarKj+c+tJMsifInWZ5gy329HxUlDT0+D97lRYJuvOnHpPdSHm8E6UwMrxDS4KVFiRhrHdLpgIUXRhGfge1SU20anETQxQqIrYduxtvf+Bb+p5/9X/jQf/jnrLXWECdXGOgUrKN7ZoP2ibNELuaNt72RjV6OcIL11Q5g6Kz3SVsDbrtlESslKopRczNM5Sm5yzn17CqzF1/Po/fexxtu3EckBUY3aJtZcqeoxTUQEh3XhiF5wEhDqZWUkqgyWcv7NLz6BVyDDCUwXlBIFSu8DFRPrdSwd6ataJRMXm+G86PQ6hCCSGqCnnwIzARqbOGXauuCtskhhLgEuAG4m4k6DiHEC9VxjJEGhBA/R/DsX57h/DA/UdLvxJBa6AuI0FScFVfJKY1Lz04cuDKXw8tVnBdXRJ5BtAsiHaPQ4MJ1DudxxT31YbEXsmjGEZhsrvhd4YLQnFIY57BC0FAJ3mzg0jPMNnpsrJxgbn4amXjQCpk6Dj70EArBe37if8BFnnZnnTxpg7XYTsonPvQp1s/C4tIM7/zhG8nyHmkvNH2Zm9/Gm25/FVEN0mTA0wdPMTW9wHJHUG9qpEwhdsgoR8VB8VQpjxM+aCeJiLTf4MqrF9lzYR2BRikQQmJkRN9O46UOTCPnECrG+SARIpUuIlyF8w4pC/pkYWSEkLjzzJp5RXjucK5RGOqJSDH04EvD/uKw9pL567Z4jY8qRFAm/KSUeFsk7ETVC6qKI1WO58vO6wGCiWQoShLeFho0oqjMdHiboHwPLTw+O0vNP8WMfwR39i5++wM/T9RbI866PPXlO/j5H/tlequn+Df/5ldZPvA4ZnOTQa+P7ntOPniYYw88y//zO3fSOpOxtrpJ1k7oddt0Wn2yLEHEGbqpmJ519DPDvXd1sQl4F4GfZu/Vr+MPP/Mwr7nuYiJdIxWS1kCSi4harVYxtOF7KqWQUYyOa2MyCc8Vyk8m2cpRvrdkuJSLQ3WRKI8lJhZ04Ub7B0nfkQRzyaMvy+NfzFwRQkwDnwF+xXvffr5dt9h2zsF9pYbjeU/8UodwbIlVUnrZitHPwzP9AAAgAElEQVRHHXngo3HucxAukS8K6QTChVfoMibRsqDl+gxPjpChYlWUz4sHn3us8UNyhBdB21RLFYoTpUI6wZSI0D5D5mdpsMp8M8HmazRkQr5yigf+8vN0jx/h7OppLrvhavZfewXUPN3NFbJ+G59ZVk+t8LUvfoXb33Iz1161nSxJydIc4wyqJnEKDh1b5gtfup8082S5Z9fSLPVazrWXN4niPt3c4L1ECU2n08EUcyYd9EHHpF7zjfsfZ8eObWgctUiiIo1FkyYU804Oab9VqHI4UUQlbzjhZJxv7/0VYtzP5eiWxqB8QF1lgk6GOlszVl78qJ6rvAGlxkuVx72VByhkwA1LYzWJHUtRNitWQRzJW5RM0OIMDfcw8/oQvRP34DYOo9MNPvCBD/IXn/0CG4+cYsfuXbzvf34HVnZ47O47WZiZRniII0t7ZZk5X4cuXH/DHqxKcDLnm3c+RJo4Hrj/MElfkKeh0UZvY50ds3Wuv2kGXc9IraExNccd33ySH3rXFcSRp5d3yZDkehblp8J1kEHsS6niAdVqKCWAHA8xq/h5CMVHIXiVdiq1GibpvAelNXmen5NgGltwy8WhAqiH3IUohMo8AjXM1YRcwAtjm0KIiGDY/1/v/R8Vm1/2Oo6Xa4zgDD+MTkv4b/Qq993yCGO/jRbegI8N75EHTSEaJiSSAmoIguRYHK7QiBGUSVVHUMoKEUPZRVjiUV4EoTzaKLlMQ5xEdA+xcfwRTjz5ALLfJu+0+MoX/pzeRospXaNea+AFWAXt9TWePXSUU88cJ2n3SHt9XnPDDZxebnHDTVfyju+/Hmtz8tyQZw4hIuo1xQUXbmPQH5BnOWmSAJ5mHLHZynj6aEo/EUipaDab4coJSa0xhXGKYyc2GBhJHBO493iMteRWYn09VK+IIPxHsaBWWXgliUCp4nc8VPMn55kN+QqBZSqyvJ4iPrTBAxAjLrh1OVKEjzz0Dv2IS+p9pSJSjC8Yz/eQl3xrrUNfRiUljrwwTAKEJBJBpF9KAktBSbwJVDElAWWxiURpgVMpuJSGjPFygM365J3j1Ospc6aHkzmt/gpPPv4kSxdcwCN33sORg4eYrU3xw//g/dz2ltczNz3NI/d/lUt2z7J26ASP3PkwO2q7sb7Pyskz7NqzyEbW4Wxyksuuu4hvfP0BbnrtlVz/2stJE89Nr72StY1NIFSaHjjkuOFWh48UZ0902LV/L3/65Sd4421XUjNt8oHATS3STRVSK+K6QKgGWtWRUhOpGkprhNJopaColgxwl0LrqLjOlOrboWDDB8qkQ4AXKK1QQoZrK0DJYJDjuIYXEi8USugAjZUMsqqV8gLrA55b+iZKRWTGoLUkMzlRLQ60SC/GNG7OmXVhUnwMeNJ7/39X/lTWcfxLzq3j+EUhxKeAW3kJdRwvZQSjU8GyJVS7Fm1l2KGc95MWxJ+zTziCQEgQ3qMoE6YEOqATQQepWLAdHlckrgEUYAnCc6JghOBKAoJHihzpcmI5QOizeL/BxomnWVAe3W/huwO++OUvceMbb+PGN7+F2foMcmE7jcjR63VIB31su8NCYwrVmMImA6ZizaDb4uL9c1ifoCJBYjOMzRG2Bh4WlxZRkaXVGhBJQz2aoj8wrKxskpmYTpoWMtSF7qT3GC+w1Hno0bP004zbbnsVSuWB6OIUaE1qJEY28EIjVYRQuvDgdWHcC2evcPQCdTVQg4WUhVSwxJiX1sD8xY5XhHEXnKvRIoRAC4FFhIdbuLHHdAjTDJtXFFnsiqc4SQ97LiM/ShjlaBTCyxDa+iBArjFYCvqlDYuJswbvUpq1GJcMAiTjuzR1xEbvCKbbRShJ2jnIzrkFdijDfXffy0f//X/jd373N/itf/RbXLKvwcNO8Hd+8md414/+KB/8J/+YvxfPspGtcfT0U6ydXWZ2xzaYjrhoaRGXGITWnDrWYqo+zVS9wZ7FfST9Hq++8mLamwZ0ijWKbrdHLZJkNqM/aHHNDQsooNFo0pib5/gqLG5fpLtxmiyu05zZRs8IZFQHFYPUaB0hCm6+VGrI0/clZGIJlC+lCr2NoI1dwmjlMC6wb0oOOl6ioxCmM7z3RdVj0T6x3D6JvYfjiuFC4r0nz1O0Ujhvhgt0GXk5Y5+v5PsNwE8CjwohHiq2fZBg1D8tQk3HMeDHir99nkCDPESgQr7/uQ/98g1ZvQZyhLWX26pzejxxJ5g05pNj+F4fVlMpRUFfdPihMmJwcoQMi3JYtEfHtQKEH7FEFEBBQJDkaJUgfRstOmi65GZAmqbUdmxjc3mFJx58mMWFRZrNGVyzhp6Zw0pDp72ByQe4LAE3QAgL1nHwiYNsX5xGK1VULQetdQ9kWYpGMDCWNBfcfe8xdu6YYv/eKSIy+mnCtp0RjQXFzl1N6nWLESo0ALEGF9VwzNBuH2f//iXmGqJQTQ3S4lkuMEJjZIBkhFSjzmkyRAFV0ofyxd+LKJdiu9Yarc8v5v6KMO6To0wKQZF4K7LuMK4GOPme6tjq7y8UoispwYZER/BUJNJrPKHRhJAgfZdYSHAZzdgT+wH/+WO/zdvf9kaUOoOe1zStpqmmOd07zSd+/V/xU7/4fua3L3Llpfv48H/+p5x+/CH+91/+eRoXTaNqdf7yz77Ee/72j/LPfu2fcPz4k9Tqmig3XH3drXTSAY888iC33vIaPv17f8rb3vomDjxxkKNHj/Kmt9yMICdJMh5/9ATdtuM1t16Adx4lHUmWEsehWMigwAsiDUljB8cOHOX6K3bSa23QnF+kbyRG1ELiR0XBC5EBjlGRRisdcFTvh55HeX+q19yLIhIqEqklYyB0WpOBQyxlYTRK3HFcFO75hiwMzDjWX0pRiGBUis+U5zlaPncRk/f+62yNo8N5qON4qSNclxGDxU9IAUzuO3rPSKitvF/hGOH91eIwqTTOF1Gos0UT6vCfKO6Rd4XWkfdo4UL1cHFeh0MKjxLgvSESFucTIj0At4rwGVJbXN5lc/UMc9umQSlmd+7g6ttu4onHH+PRRx/jihuuJZtKyfKMQdJFWoNJ+phkwKEnD7KtOY/LLDZRtPopzVgihcchSBOLkBGt9S7WSGKlyDLBsZMpS7ub6EgSxRG1Rg2f5UxPT+GtDZFmkeS0osbjT55hYX6andumaMQgpSKHUJVqIpyqYSVEShUOihhWpwoxui+R1lA8B1KExaeEI6t9Is7XeMUY9yHDQYy88iH9ikASKBNw52pXjIuIDXHDiSKPFzLwxoOUBiXBiRy8LiQAWkzZNbprp5hupiiXgk2oO0VnY4OnH/9DbrhNc8XihXzog7/Jr/xvv4xLVvnYb/47fulX/i5+LqI+5Xnq3gf53B99iff9yk8ys2eeTAuSzQ1uu/kqOkcP0FnbIG5oaGX80cc/y4//wv+IigU333QD/fUV3vaeN4DQvOOH30Rrs0er26Lb6bByesBFFyyh9+XkyQClFFmeIbzEmuDlOTSrK+vs2X8LvY02s2pAp73B3M7drPcFIm6iogY6ngqNpeN42EBE6hgdx3ghQYZJ7PAoERgTw4KyAn8NXmOoVhUqLCqIUACFDA+CB1T5u9Rhf0CKEo/Xw3tWNUxKKTJrUCpCSoGSEbKkqPriHuuQwJZSvYjE+yt/BMM+Lro1/nd/zvwePQuuiHBG3j4wKhKsHsMXnr50QXNderRUeDfKg6ni2cqtRZdMJGGRzqBJ0fTBtGnoPkok5GaAVAblPDJ3dDc2yNoddi5dyKkjx7jz7nv4/vfczusvfivJmU0aOPrtVRI/QDhH2u5h+hl5d8Di9ALSKmab20iynOZsAywMkgHra2vEcR3nHN2NjEcePs2rLl3kTa9bZLOXYZ0hcw4dx+RCIWuBhikjhaOPMWCsZnkzodNrcd3llzBVA+kNeebxcYPEeFI1hfGFg6KiguashklV4QuR48KWySL344t7p8Yco/M0YYrxCkmojrMjSojGWnsOkphbM5YADWOU0BtLvsE5bInnMu4lzUx5iTaKKdtnQR+DwV9jOncRiyPs2Z4zXfc0YoXE0GpvorXmA7/8D7li9wV0Tvf4qff/DHJBs84ql756N9Ele6jvXCTVNRZ2bOc9f+ddTNc0G702yemTfPZjH8WnHfKkg48FeM0X//KrNOpzPPrQQZJuD9tN+fTHvoTKG6RJF6tSctdjMEg5eOAEcU0S13NqdYWUmswa6vWYqFbHOYlxGi0bLO2/gQ9/9GucPX6EPbu3MT03y2rfQzQFQhPH9aHxiOOYKIqIoqhIfI7YTCOWzMgLKfnuwbMPVMmwn0IoSRzVgVEnJinlkDcvisTrKCk9LiFQHVXBqkDH8wWlUgVMWMkx1oxQr5gp/m2M56/lmPx3fJ/w/qFHyeh5GlsofMmq8WP/Da8lDoFFeAPeEGuFEKEzknBt6qJNZJZZPfYg03Id0wrJ0q987lO4LEGmAzqnTlP3AtMdYLp9lpYWeec73kKzEXPm1CmeeuIR7rnrG/hsgMxyslaH1ePL3HvHvTx+9xE+/h++zpGnlllZOUusIwaDHmme4b2gUZ8mTXKcsTSbU1yydxYBTNUV0w3BVDPm6UNt1tdSrFNIFRHVg8NiTIaOaqjaHA89fIJduxZoTimUDx3FUDWMUaQuxqqgsyR9qEINOHpFY6kw3lLKgjHEEI6ZvHcvhCR8u+MV47kDw4fTUuH1TnheW+mnVwsuqpjjpGcC44vH5H4ztRoue5Z25yFM9zBKWC7YswdrYrSoDXVTPBDpJi6ynDh2lB3bF/C54Zv3fpnve9c7yK0ijyJ+8Kd/CNZX+OPf/VPe/uPvoTYlWVzYTavTwg42mYqavP4dtzPAU480VoG1jje9+TY6pxLuu/NJ9my/mTYdXB++/qW7uf5Nl9NrdzD5gCTNSAaeKIrwCL555wmuu3EXzoGxFpMBShOpCMcs//X37+Q118xwwUVTxPUZOoMaTjcQKOJaSBDVajWiKEKqCIRCxVFgyZSNBwojXlbaVq+hEKPw1LjgheuiUw0Ewy4RoOQQlw/HriYLR8wjD2Ne+xBiUONJ9dwU1aqhioYQJgdmh5/UHvouHOOGoKqCeW4StdynHOHRGO8wVtZjqDL56cN7hAhuUoiVZVEEUtx3Z4AMKS1xANURpEjZw2XLRAy4/xtfwmcD9k7fxPIzz4D1vOetb+PU0aOcfOY4Bx56hKuuuoalfXsw2QYbrXWOHz3CwtQMi4tLyN27kbEi6wfcfP3Aab7wJ3dy4e4lTp85w1V7t3Pq2VPMLy2wfqbD/fc/w2tvuZjUJBx4ag2J48KL5/E4prfXSVKPsw4VZ9jcsXvXDuJIoL1GOIPLBBATx9MMaPLY4bPsu3g7u3ZOoSJDMsiJI00mavRzhVVTWKuItKIWa3yp3CoD20gUhl7KML+VCh6+rDQEL+dzWDRf7pkyPl4xxr3ETI0xY4qM1ZCzbOlVapKEN0pEwdgo2TJVTnw5tko6AQXeE4zI66+/lK9+5UMkm3czW4/ZufNi2p0OCzsuQDjJ5uYmC7O10I3FpfQ6qyzMaLLOCjZW3PJ9V9I1J2l0BHUs6aBFJgxv/+G347MuiYyg36c5PU1nELq66Jkp0u4ArCZJU6TNqEuN9gOuuWwPf/Xpv+Ca1+7n9e++kloUk7bWWT2R8vRTx1hYmGN+ZjtZbskGguZsRJYGHFTpGKvLkLHGN+85wJtvWWJu+xSpk2TJHImMqNU0KmoQxXVkXB966zKugQwsGAgaMlpojHfnGPVgTAL1zTlQSqLjKERCSiFLTF2G3jyySMxS0OtQfpg0rN4jz/gcKLnEAZYpMXs9bFlY9qT1vmioLcWYRPN36xA+YNrPlxw9B3Is1jlZiWrLfycVO0qPPiRAJQ41PJXwHodFCosgRZDi3QBl1/E2xbuE7vpx6gpuuf5KfG74/Gc/y5vf8lamajW+8JnPcf2rr+fChV3s/5vvYaV1mvk906RJl6zdoru6QU92mJ3ZRq0WY0kxaUK306fuI664eBfbt+3i7NlVpuabLO5ZhJrFG0sc9cgMQcHUO86cMezY4RFSkGWh/CrPuphBxsL8DIoMhMfJAUpDmkKjPoVRdVbP9NhYb3HbDZdQiw25yRE6kPGSXOD0FELU0cSUHalK5pysvkQw7KWn7gHj7FA5szrOd7u9FzTuQoiPA+8BVrz31xTbfg34WeBssdsHvfefL/72AeCnCQ7AL3nv/+KFzuEZKTDGSjNZxu+qXhsjHFVIP2bQq4Z9HJcPSY0wwYMh8sKEHoheYwT4POPXPvBj+OwwzZpmYfsOpPIszM0gXIb3hulmikk38C5FYFBsInCkeQ8pNGaQo+OIlgkt87StIyNwRUZfeYeQEXnmUF6QpjnCWKQIrfbwltz08U6y2etwzz2Pcstt16JrcM+9j3DF1ZcSR4puy7C2BjNziocfXOPmN+zl2JEWSxfuAjKc1GR5RqSnSVNBaiSX7dtFc3qGvtfkogZaEylNXJ9GRDWiOA4GXiu0ipFlRSpq6IkrVVz3UnNHldWiocmClDrEXF6AEwgZvHYZlUnU4IFqWUMIsBSTvuC7B49cDo06Q3bMyMi7gnnjQ7YWcAgfGDFCSpwPTRaEDwbqfIe+34lhC/faiSCeFyiIo+RqyScf8+g9RXIz0CHLhRdGOQzni1xF4PkV2D4IssKYezQ5Nutg0w6ZadOYjhAiR4sOm5urPPrIA3RWznL7m9/A2lqHpD1g58wc2/cs0llbx3nHn//Zn7Hv8n3c8LrruWBpO8cOH2D97DpL27dzxb7LqTWaHDxwmPW1Va66+lKMy+msb3Di0DKvuvIy0tTy2tddixAeHQkMKbmwXHTJHqw1GCuI4hqXvmoeYwU48C5Ump4+lRHriOkmiEgUwY7HWc/UTBPjFQePdjh2/AQXLu2mrg14S2Y8Oq6TeU3uFV4orPfEsUaqUGshRUioCiRCFDRIqUDIIeWRQr4koL5lxBsIBfJ5kv0vx3gxnvsngN8hqOdVx4e89/+6ukEE0aW/DVwNLAFfEkJc7ssa/m9hjDwNj5KjHprVUTYMLml45fvGqhmH4Wvl2B7CV3dYZZFKM9eY5i1vuZIsewxjBwwSh1JzSDmLN90i+y1I0h5aQWdzA5GmREJBbvncn3yF97z73WgnSGNNmqZ47TD9UAQhcFijsK6PR+Mt9NfWMcazsDBP1u+FySsMeWKZqqdcd+N+jp1cZ611lkv3XYCwml63zfz2KV572xJplnPdDUs8+eQxLr10FyJKi6pAhRIRkYpZ722CNtRn5uhbyKWCqE5cayJ1SJrqInmqtUbpeAwjrMo9DKGRopLRF/Q3KVUw6qLwTlSY5EPIpeT7FrIFgd8eFoSQ6xBEOg4Ls9rC06wwaXxJ1ROBUjm659Wk+mh7nuff6tR7xY1Q/CJHbHYRjBcFC0NIEWQblMSaENV460JRF2UnJY9wBaUx8hg3QCiPcBmRUHiX4WWG8J6a77K2fAwpYGFOEKd9IpshphXt9jpIOHjoMBfvvZjXXnM5Bx73HH38Sbq9Pptra/zNH/kRjp08zp133MkPvvvdYFLam2dZOXOY5pSm5h17FhaJEfzhJz/L7sULuO2N1zNfn+KbX76bq666nG3zOzB7oZ/3eOixp7jkkj1MTzd58umjXHzxHrwUzMxN43D4zLNtW5PBwJDmocrCWk+k65w8ZZmdc0xvt3g83c0ULSWzCw0sMadWM548sMJNN17Kwqwj7bdBatTUAonX5CYGVcM7Qvcx5YLGtVBoXRsWymk5gmBEwXGXQaugcGr86GdG/PfzOV6M5O8dQohLXuTx3gt8ynufAkeEEIeAWwh68M8zxiETIUaMFyF9kMgthLy8GCkyjEnzDg26HL5/MtFUrWgVPqi5icjic8PnPv1Jbtz/DFauIxRsX3gVWSapRbNYbIhDvCeKt2HzAXhDjWnOHj/FIO/x5ptu57f/8R/ztu+/jqtu2U/WzxFS8OSjD7Nn9wUsLe3gwJOPc9GlS3ilkdoT2xAEt1tnca7g0Q8GHHzqWQa9OlONGoNuxMZyzmMbJ9l32QWoyJBmKYMkQWvN1HzG9dt2B5aRbWDxRLpGnvTp9gbMbttJ5hWbicbqWoBgGjMoHeQDavU6UkdBYz6OiomocNYF9kFpUMtrKEoP2SNFVCwEgcsbDG/4HmHSF113hC4wyEImQImQX/Gy4AUXRSByHGevet3OOVA63PWCl+y9QyuNKVozusKwDxcCf/5lVb8TQxJ45UUOG+t9SDr74I0LAivJOIPW4HyO1hJRdACz1hWiXS4YcgZonZKlbfJBH+scjVpOkqwS65jVk0dx2YBWv0dzaZGV5Q2eeuwg3/8jt+M7CU889TSNOOeBrxzigv37WT5+Cp8a3vqDP8DnP/95cq1ZPrHCj/2tH6fXb7O+cRJtMmw+IHMzqKkpMIr26iqx0KTdHt6AzaHbMrQ2EqYagcc+6GU069MIHxymPUvb6fVy4nqE8y5Ev15hjMGYovepN4Akywdcc+08KIuSDkFEt5fi3IDte/fQSuC+B0/y2usuYLru6LQ2iJSmXm+Qe0lqwCnwXiKUDpGlCCQBpVTBGBt56aUxl8XPIV4v7JMr5rUXQ8fpfDdv/3aWjl8UQjwihPi4EGKh2PbSGmSvr2O8GzZhKP4+9pBPeo/jxrsw/L6iKDmBsVeNf9DmCLoxWIWwjn/9m7+GMRnWWrZvXyBNPY2pOXKXI1UN7xW1+hTWAVLz9MEDoGB6pkksaiwsLFBvwle/+gjkEemG5lMf+TwPfO0kf/FH97B+IuObXz6MzCJML6Hf6ZLLDqiUQa/H+tkVfGbIewOUbfClL5/kgfuPIGWdi/fvZN++HVhh6fQHWCNQcYT1oSLWCIst4I8oqhHFdRA1RGOentFsDBSiMU99agFVaxLFDeKoTqRraB0PDXs5JYQQRFFteB1LSGzIUnIE72NYdi2LytUowDpxLShD6uDhlPrqoQI1SC8LVGh8TFEMUokUyvNMKoWK55kPYaHQQ0iufP/3AhVSeIVwCuHK5iUlDGPRMpTFCx+aiysvqXmJcg5tEpo+Y14YZv0mfvMJTOdBfPIUvn+QmjmJSk8h/DKPP/BVjt5/F/bsUWxvhQt3zWP6HaTL8DJhcWma9Mwy937xa/TX2pxeWSZqNqjPNLnx1pu4cP/F1OZnuelNr4ea5Lrrr2Z9/Qz93jqxLh2DCKHqWCfoJwPiqZjX/40b2bZzO4cPPkOeJcxMTfPAvQf466/dizOOWhxx8d4l6nWNc47VlTYHn1qhs5lgjSNNU7rdLnhHp5OFpjQq1HnUaoK4Loni0H9ASsGuxSYX7dtDO4k5dGSNbQsN5pox2aCHySxRYxYr66RW4FWEQ4PUUNR9lEZcFTRIWTgt5c9lbqk6f8O9KgvCvjNMGXjpCdUPA79OAP5+Hfht4KfYOnW/5dPlvf8I8BGAq6+51mutK0yWEcxSLcAof7bOoYQOoakoq1HLJOxzf+ghOuRlaL4hHJig0PjRj36Yo4c+yYX7NO1uwo5dM3ih0LHCmtBPsd/vk+UJmJTLL38V0jmiusIPJJtJwvt+9l10B12SfJ1Od4PX3LwPb+s0ZzSy1uf73vl6Or0OmesST81gfOi8LpxG+jpry2scePgoFy9dztWXLRBNzfOlOx7l9W9YotkMwUMcNclyCyLFy6ioKozxSIQGR8RGz+LFHL1EkhOjmlOouEkU1fBKEcX1QHv0IfkposCGGUIwSoZKUwAVWBOqYKgIgjcemjfoAMEIMeT1ah0XHkvAIsOE1yNKGITmH0WJdqhBEsNjDHMrxWfxZRWrKqfqyHiXQ0gdEu2MOgZt5f1/t46gGR4gSikcrugQJFWG8CmRSFAyR7qEztoywuZM12s8dM+dmKzHvkv3Y/I2zaZg+85ZktwSEbN+/CzaKDquxeWLNY49tUHarnPh3j2cXj7Jtu3TKNNnYTqGrM7xZ54mjiVvuP2NuCnIvcVYj3SS5vws0mUsxhFf+YP/xvW3Xo1VIIzlji/ezxWv3su+V+2jlw9AClZX15jePs9CXKeb5CT9hNT0qE8rWEmJ42myLMcYw9pah5WzbXbuXCBLNCbv0u8NMBaQHq3DIr8wr3He4YXBe3DWF9dJINBIYmbmI7KoyT13HWBpcReX7Kpxdu0k9XqN6ekFrJoitR6n63gRIXUdqWuU8gJShZoMISVK6wojJmDtUoWcUZknFEPYJiryfiOq7vmOKl/S0b33Z8qfhRC/C/xZ8etLFlaqNv6t4rwhlJEFthvK1Mv9q15etXApJNsKD33LIYeeu/SBCbL3iuvorn4dpRN27dpDkjnigrFRj2P6aRdnM4Q1KKDT7SGRZEmC0oLMpcRRFwaGvAczM3Norfmv/+kebnnDEs2FiMSmCBtz4uQJLt13DYMUJAaRwcnDXe676xg337SDbm+dPTunefjACfZcOE3ckORW4qkHLF8ZRBBRRagYHc0itSDPLStrOSubfRa2L6Frs9RqdZxUNBpNhFR4pYlrjeABKonSUcDpy2uvVbh2qjDYBQQAhcGWOoSeIlSsBlG0gtoo1LB6tGS3IAPPPdCti/slFSXjWspCXIwQsZZl7aVRH8P63WjxnoRsqsn0kntfNfLfzcMX7Rql8AiZotB4l9OogbQ9NlYPE6uEWCbURAdsQmRq3HDlHF7NEDc9qBmktWS9DlPNKU4eO8YzDx3gxFPHePPbX0+eJ6yvnOaiy/dy6PBBli5awpqUrN3mr754HwcOnuDvvu/7ufGSCzEiYZAKpmdnUcaivSdLDRunT/LYHXdy9PEnuPnWK3HOkPcMD/z1QS7avRvhFSdOHmP30h52797NoLVBnqTM75jG2QYuzdm9tINGcypICeQZJjecPdtjY71HlkCzWfv/23v3YMmyq7zzt/be52TmfVbdelf1U/2Q1GqpW9Jvvp8AACAASURBVA+QkITU6IXAQwAOwHgYGTMKMxMwMSbGfwxDTAQzjiEC/wNmBoIJYtAgHDYyBsbWYGwgAPEYQ6Nnq1G3JbVarX6VqqvqVt1nZp6z917zx977ZN7b1aJl+lZVl88XcePmzZuZd998rL32t771LU6eXsZYJUbNw8GTksgYwYilyXUH33qQKp3opEYY4aXiwY8/xbHDK6wuOS6fP89ouaKqK+rREpsBotRETadSH2Fk06l2pthKtIx189YDOTbJLHuHFOTR1AwWY+jqUNcF534liMgpnRkmfTfwV/nyR4F/ISI/Qyqo3gX85Yt5zC4wC2iYeagLNrVTaLFwDZQGmeL3/nxpXnnQvQF+nprRojAwgYZIqyvc+6a/xROP/R7nz2+xstZgDKAjtqcXUI1E3zB0hmY8oTbCdGeM+EB12BK0ReMiF59b53d/8z+wsyPIyPHOt93BiZuW8X6Tyo2YXG5ZsSf4o//343zju19NmHqa3TED43nb224jaoM1htq2vO61xxHXUlmbxsXVY2INThwqy1TWYeoBW2PDxsUtvvzkRW67+/WcOjzAa2QwWsS5GsWmYRrOosZiDFQu2fkGA864WYCM0jVnmFwUDSGkAQ1GqNyINoRcNMpBttAqxnVH1DQT1nb2BTHk599ZKuO6BqS0dxe+PJ0QUtNM914DsUneKbNh2ib7uKfLJlv/zrXTv0g7g5cDrLZYC4QxVrap4g6iY/zmBkanLA920TjFWaWysLCyxHRnl9//2L8jROG93/Gt7G7sMIyGsLHLL3zoZ/nvf+zHOPKme3nTK+/m3//7j3H+3Dne9+1v5blzz/Dwo5/jlXd/LztT5YmvPMV0d53XvOoEy8eW+eqFi9x+8giVRMabFwmTBm0aHvzzv+Qt3/gGXnX/q7nz3jtovGd3Z4dFWeSeO45ydOUEoYWTp07jnCE2LeJbKhPxUZkGTY1zC8qKrVJm7qe0oeHwEZIAwAyTA2sVsl0AhNBirWPaeMDi25C6nUNqdmvVECI0fko1PMwjj53nK09e5t3vuJNLzz3L4tKAwWjEaHGZSZtOvpItOMQ6MMkQr5tAloNyujxLcJxzKdmS1OsRYpkBrNnvaEYjzicfB4kXI4X8NeAB4KiIPA38JPCAiNxPolyeAP4bAFX9nIj8OvAIaYTZj75YpYwxEKPHiSHmBpfO8knA2RzYJRUxNA/Q1gj7hbvppzCX3e314lA8kpUWEYWYRmo1g9dw2z2LXPzqH+DH67RmQOWE8e4uCwsLtCGwuXWJSlKAnQDTZpooiuhpxzuMRoEH3vNmPvOZp/nqxfPcfOcClze2qPww+axfrhjYJe593e1MNj2tH1O5AVuTDWJo+dKXz3Pf/WdQMVTOsDsRJs2EpZVVWp8KZtYMcIMR46my21R8/svPcez0bdz+mrswdZqc5ExSvogYKudQ61BsquqLJOve7JrYBp8nyQg2W5c6lzl3HK6qO9qkJSLOUFWONmck6QVM1E43lCMXlxCLxpnnhjMueZTY9LqpMV0RNWpIDWzOZropcfPe+/zhSbMnUx9E3JOxF1/4rmgb88DsGyBzr/yniNMxoZ3iaoOtkvzTEMFEnBFUDTG0GCNsbW4yGgx44O3vpMJhxi2HzIj1r27w5Bef4If+wQcZm10Gh2o2ds+zdnrE0dtezfJdt7BweIWT976axg1YxHH89CnefmwNcY6tixdZXjvM5s4m7GzxlYcf5eHPPcy3vO9dvPG+u4lhCi41ldVqsW6R3/23f8DuWPn4g5/jtu2bOXXnErRK2A388e98nPULG7zy3js484qTTGRCE6dEC23cxTeB9fPb7GxPGA6HwBRXW1wFISZXRWMMXgPWWbY3xxjjEgUiyQ/KmApwmHqRf/XRz3Li1HHe/MZb2b58gaNHVlhYGdFEx46vmKjF2CEYi3UDXFURsV0wd85R13USAViHznejapZZqkBWkVlrIQdxgY6GeTFTwl4K/KcOyP7lr3H7nwJ+6utfSmpGUtWOryrZetrp8q3EEbLeHcrxfJ9pWPrF/Jq+5hNZ/tZOgNbcxtrpbyNe+D3Y9chiZDio8JMx2jaMqprtrQ3UB7xOkYEmm1EFVcvSilDLlDcPD3Np3eJ1ysLKgPFkl6gpoP7Wb32GtVPwnve9Ch8CGxubTJshn/z4Wd71vptRs8Njj69z6803M96NfPbh87zz3fcyHGmS9tXLrG97diYwWFji5lesobZKRUyb9OmuGoC1WFMl5YpJGfnsDQbOWVSgljo9t9nQS5xNVrzpytkgZutmo9IQnEuqlcKvJ8olfy+SxrlO1sLb4xJ/LMUGNb8GBpupoFm9RZDOskDMbLhHOSLPF8vnu5AB6rq+ITJ3bZ6gMjCoLcN6yOb2JksLi6ikLkfjBsRgGQ5rNi9fYHW0wHhnmw/9yq9y/PAR3vnOb2JxsMBH/sW/xtpt7nnbPTAQWqOsnjzKA9/+AI0qag2bF9ZxSwN0pFw4t54UNgs19XDA1sUdaidMx5ssYjh55iRrx9YIGggClzcu4+qKxUOrhFbxvuXETSdphoaHP/s4N99ymul6i6+V2li2Lk0Yb0bWz25w6uZjRBOIMeAnnhgnBC985ckLqHecOTNktFgjEtnZbqjqGiF5yEdVYggMh0NilJQ1W5sLmA7MiCee3mDt6DLHj1p2t85z05k1BsMBEcduI0g9SIVTsUkibCvQ1IPhnM0ujjO+PTUqzYqpInmGgRa543zn/POH1VzPBdUDQbLZzUZh3e5WvEssEjUfd9IxfX4eJ1G7CetApnPC7HHTo37tD7tUhAATewusfTfOPMcXP/97HF0KVAainzD2u0x2dtMQj12PRZjsTvG78FcPPcbd95xmyi7VIeFwtZCOp7ubtK3lY3/4Fd793nv4tu+6k8EoEkOL+gqNcGhNePNbjxJUwK/wijtOY62ytrDMO8+cJDCgiY5JhHZcE22NLA+ZSoUb1MToGQwGtJp17nXiGik8YTXP9bmUtdtcECXTJzZvBLlxKVkEgNpS/Ez8+Ix2ka6DNQX2EoQNNg/OsDZJJIGu0ag01ZT7pS5Vt4eXL7/rupJNGsEHM/VTuTzbPGz3PYTQ3e/ljlp2cG5I5ZJZ2uHVQ8kga2uL1dXVZG6HpW0Di4vL+HZK46d84L/+PgaDmqe/8hSjYcX7vuP1iFWi8TgZgAoTP6aRBhsDO2cv8ed/+Gfc/81vIhxaRlSwI4tYR+M9a0eP4H2DNlMaO2DqBDUV9WiIimHx8CGigWk2cjMmcs89d3H2ixd56ktDPvfxz3B6/QQ33XGKhUXDK195B1957GlGgxHRR9qYCqvRRya7U0Kj3HLzEc6d3cEHj0iNAtvbQghbrK0tEyTmAiZQ3PslWfQaa0Brpq3j4vqEo2tDJIw5fmyRemgIWCZtBdVCGpeXPxulcEq2762qumu2E2OT6ou9iphSPC02+12tqFg8zCkBCw468bhugvvsyZhdLgWxWcepwZrkFGltyjqJmhs39nZ7JQ8SecEP+HxQmJ0QDEGmiFZUeoSt8ZBTd3yA/+lHPsCbv+FW3vuONxJ3v0ycTHEDwyQqTRSaNiIo5y88xx3+DL4dAAEitDFg6wHVYMA733kPv/Pbj/Ceb72VNkLAoCimrlCpWKpHneeKGCGamhCFoAO2W0OMNQELrgJxqEl+61LVVFpjrKPOmnKRlGGkbMOAdQSNWZNbJYsAW+dBA4lrl2LqZV0Opmm4RiqWSrItFZOff9e9uROlkoN+6bLJGXeakFSCf/rfrJkdT1UVWw/mKBZykSxlY5EUrH3cO8t2XkFVsvh5DnN+g3i5w1U1xpo02xPFkfT+a2tHEQ0EbfDtGCvKdDrGaaSyivhAmOxw6vhhjImcuesoIjAdn8NPKO8+GlpUPb4OvPV9b8VUgvcTDAMaIia0GFUmPm3qIQbUeOqlEUTFxcRxq6YBNsYofmeMaES9YVRH3vjG25nsTHn4oS/wxYce5e3vfT2rJ2vuPX4bvg1Md9dp28j2pufy+pi2mbAwWkBUOH7sEGID3nsmPuA1EKIw9Zq7m5Narg252UtSVh2j0vjInz74BU6fOszaoZrR4iLGgvcjpmGAtyPUVRgDzlpsNcSYClPV3fCNFOwz5+5qyM1KhllHcPpus1Xy3vffvLqruHTygr5AL+H75kAf/evATO3iUEKXsVlbgnmVnf5SNh80z3u0BqvPb+MVk7bLWWDfW7zYf0SKMeLR1BrvPZGADEdsNBX/+P/4NZaH8OFf+qe86e7jHB4dYnPzPMOFSJQGDYboI+94xzexOxkjpsLHiDolUEFwxGiRwZh3v/8OqhFoWECYgrSojVSVo2kNEYM4QxMrpq1l6i0qA7wZQpUGZQzsKLkfotiqQsVgyfajOTAbW3XNR6m5IgX7qkqGYCYXNUuzkRuUIRylOJqGpZjcQt22gapKkkZnE41TqBcNueVfDLbL8lPzUyop0ckcZ29ywbm6u38aCUHi4vMHwNo0d3bedbK8XnvUVMzUVvO9DjdC1g65C7XQUBGMCcTY4NsWoQU8odlGrOAnW+m95xvitGEy3kkb+dARiVlhYokhpA0jpiDfBg8OfIhp6HhUNHXOk6bEpROexmTbERWC9wjgQ4tvA4PRCu10DDYNs6mtRdUzbQKf+49nWVtZ5M67bmFrvIloYHdzzPrmOofXDmE1ELyysb7NY5+/BHhGoynGWjYuBm69c4Xt3SmbGw2H1pZYXV7Adp7yudBu0kmzqoaEmCiZLzzyJDedGHFodcTS8ohoBA+0oULtAEyqUYmAdSnxMZl+SRRMUndZm6aQiZ0pwlLrbxFmzN5rJWNPjcFpyHiXvpfPw9wEuYPCdRPcYRZkI3QFiRACqor3vrtNF5itIYaY5HT7Ji/ttSvYPwz4So1QiTnWkLLJCYAPLAwrpo0SteJv/4OfQNoJTlqs7vKv/u+fYbp1idfceROmcnjf8PhTz7BxeYfzFy/x5DPPMZ3A+771Hu555RkWJlMmO1OmYZcmKqKHsW5IrCxaOXY0YMwy0Qxoo0XrpCu3xuAkTUJKPF+VC5np0+eqQfIdMSljNyZJHONcoO6aLvJIsdQolwK3yqww1DUAuXpPMB0O8xg9k7jHGGMX3CMRW+VsPB8/zRw37vbx5MVcDGYWvh1frgGR1HuQmp867WMnc50VsfR5Ab881osbov7ygHOFz/UYScID1Qa0AVo0TKhNCxqxMiFqi8aWGBqs8RgL+EDwkaoa0LYNxkiSCqpiKIFMCX7WhSzGgGbZbUxGV9akzm7feiREQmgJaU4ZoW2S6CEGojbE6GimEy5vbfDMV8+xccnxTW95NYvRIQImwKVzlxkNhowGFTFEnBkwnSSFy9qRAWef3WT9fOT07Ue4tD5mdztibWB1OdmHKOU0kbJ3I5bghTYYpq1S10OOHh2xsFjjEdpoaWOik4pNhpE0+FqMxdR1ljlWqUZkhMqlOlbMWTw5NmnMnyHSZmdKJ3d53+Vv6cQ74941Cd4P/n1z4H/h60CiB1IWCILqLIMvRTVVJYQ2P0mpcBFjRK+gaf5aUrj9x3URwYgSjOKNUHmDM8lTHrWIj4iFaGrGwRKp+NYP/M+Y2LIgKUBtbpzjcvsg8eyXOXnXCq+RyNLSEuLh0k6Db85TuaO4ISydOIS6GtUhu5NEhSygtCFi1VDjU3NS1ux3NriqqDNJDhlTBT5KasryGjuJY4xQ2aqzAkjXzWSCkSQnFJEc6NNjV4MBxa2xODuWoF9VA0KM3esRcsCuBjkDz9SWkoK8GJP1vXNNSZoKsaolGM+OrTFGjDNoDCmz0VSEDTqzuZ3vayhyspm/fJq+VFXVno3q5Q5lF2dT8DPW4n0K3KiH6NEwheiZTiZUAtpOcKSpQ1Mf2Ti/xWTHc/r0SXa3tqmXaqIqrq5ppmlghQ8R9TYNYAkBUZjs7jIYDPC0qdAZUyOOn7Y0W9vs7OwyGi0wGo3AKE27i6rS6hSjU6aNQX3DkTXLW99+C9oaLm7u8IXHnuXYiSGnji9x0+mTGK3xuw0+Buqh4d77juIcNG2LmFUWRobJeMJwJCwsjKhGgWjKcJjZ/FMrFWIs43HLM+fOg9TcfMdJRBMFOg3ajcir6gVsNcAYh62qRLXky8am5iRbTrwiWOfyHNR5anDOxPAKxdLiwSQiedhQ+X3xbroOde4vPdKTEEndkUYU9QFrDD6mtmqJgRgCIsl6NsaINbOsTp93BI+8UOK2nwcr1/nS0UaEKjGSGiPOpInv3s/a2kUMAUMwNVsxgFfi6Az3v+e78E3yuNDgaae7tG1LDC0hBKIPIJF2Ms0bVWBhKW1Y9dy6VDUrcHLhUObfNHsbIYpmfyB5QlLu/JynLaJJbyYryX3T5fslp8EcaK/U1SkuKVZs0qJ3DU1iyjS7LpCXN6sRwc59AGYe5LO2+ZJxl3WmJhSS66dopnnybMu5Nc1v1vNBvVxfTnvdc3MDZO8CSb9ts8kgYKuK7e0x29sbHDm0ChiGtcFqpPUt1lVsb23grGFYDzlcLxC2W3bXJxgR6oUBYQrqBa+B2qZ+hqb1NJNtKmcJUbGVZdpMmLZTXL1IiBFtGxaqEX/xyU9w0803cferbqdtW3zO2FVjsuFtwaihaaYsrw6Z7LR84YvneeorW5z76pjFbxBGCxVBPTQeLzE1E4XIeLwDAovLuRPdBg4tOECpB2nwSyQlCcaYHAsMzbQhROHo0RXqwYhgofGGJgre1GBzU1M9REyFWIstJ1/nuoxdbLIZEJIYASRl+Pn9H0NMJmHlM/kCOUQUcp8O3eenbAplhvBB4foI7jmIRc2Cf51lcmIyn9apZ1L21/G6MSJmLy+71zAq7pHLzXe/Avt2XpMWkyVWIR+xAuTuzHzkz9RDBJA0azWp+JLRWeWGaIiE4BnUI1wIxOiJ3qds07dUg7Zba/SzEwp5qHEIsyYHKRufQIza+dl3nZuFpSqKFnh+YMsTioxJU2QgWcmaXMScv/0ey2Qzy5ZN5tFLADUyUwsk+SpJcQM0zSRvLGWQQTq2lsL4/Clr3gum/H1VxWdP9qKUMezdjK9UdJ9/jfdScy9fOLeARiGKMm1aJFY00ymry8cZDVaYTnawYmmmkaGpqUTZWt/k3/72J/mWd91Lu92ipuZ3Pvog21uXuOs1N3HP/XczWh7i24bK1ARanj37LHU1ZFBbFg6N2N3d5itPf4kjx9ZwtRLaXaKkXpTx5oR7X3U3w8UBO9uXs648vU/8dIrDsHFpi431MecvTJhMAseOrLC0sMLQbbK04KgY8uXHz3FobZlDh9JnpmladnfjnBhAWFlToO4S3RjSbNIyPCY1sbW07ZQYYbCwggmGaCzjVvHR4U2FuAGmGmBcjXEDbD652jrRnNYmZZA1iVsvIo35hGYmJsjxp3tLzlHCkJ08ZyoxIy7XnbL3TLb+PdD3zYE++ouESBq864zNM1NLUJvjqQQI5Xi/N4Ob5+Gfn7GlYLk/mM8H9fnH6vh4DESI5HVp2MPVpxuXTDXzv6nNBkiBUypHjEmpYmOFq4S2maJS4YyfccZVztRjJBIyXaG4/AYSYtaWB0TToOKy9shez/MoM523nacmRJJ5kszkWjmn7vhvVe1MvozNDpFmZusQY9yzkczXNvarlQaDwZ5sen7jKEXbeZ68Qy7kxeLumde4/3Uuj1f4//nXfv51LTN4X84IUTM9oDg3YrIzYWe3YTgc0rYR62rUe4ajBaYbW0loIJalUYOlZmVtDcaW2249wk2n38iv/ebv8prXvQ5tIOwaPvWJTzCwjiNHjvL0hSe5cPE5vuWBt3Pu3HmeePocS29YxgwCg8UFiMq0nYCJDEYAnjSCUWmmASvJrdL7CSaCxpr/78+epK7hNa+qqaTCezh90xohBEZDh6sGjH1DO51izTKDQQUCTeOT2swmm+eYEy/jbFdELUmcjwq2YmFxgZ0pqB0wbjyBIdHWGFthB8PUq+EqjDiqOtGJiOkep6i69tpez5RYpaHJ+zLbOSeNc6fdxKnPxZY0THWW5cdklXDQecd1EdwLSvGUbqDA3mamyrk8qanqug9Thn9lP/cSlELYW7S7UjZX/u5MtZMKNUYcMfou0OQ/kl5sUyrjKVCKaGeVEMtpwlZoiGBBfaCqB8nPJUR8DEiMaMz/d4xoKD4sQogeo7m2INJl7OIy9WBMJxvsAjyKyzLFGCN1VXdyUO99siKVFPBDCNi8caV2arvnuSuvw/zsVFOUAMag1nSy1BD2DiRPazZzAfn5m+meTamcFMrAg1ywNXkDi9nbdn6jmX/NO3ms7t3sbgTFjBJxFtoQQQ2D4ZDFxQUmk+1caE7Ncl96/Evccuo0opGI563f9BZEhXY8Zbzpee7iBidOTVhYqonRoBHOPnmZ9a9OeMUtt/Pnf/ofOXRoAR9qprvC9mXD2Se3OX78Ajfdtsp0vItYmwqy+NxfAePxBFAur2+xuLBIbQ1x4pluN0x2Im2bCo7Pnr3MiaPHGCzUVAPB1ZGV1UVwMJlMUiYbi9QygElWFSohGYKRhsEYwLryHnGEoIgd4dwg9YGooWmh1QFSjTDVEGsr1Ng0t6CqSMXX9DlJ/QNJXCBZ9lhQVHplwEZ6r+Zk0UjqlldlP81rTBpOX9wikbJ5ZKlm9sE5SFwXwV2ZOT52hbX8ZMcIMZY243Skf94HWV5YAZN+ts8L6PMFuv2BYp7yyCEOo8WdWZ//t+az0hhRYwghZRXJ6yI3PFSZGrEQbEuVJZylMBh9wGkJvBGnqaApZpaNp83EzDafOZopxtgF+xknn20BiF3h0+ZNwjiLKJh5r56cVRfrB4mGylV7nteCqDMaxrnnP3/zJ6i9NIrb83ghnxQgndaUXGNg9n8Xm4P5/7f7n4ufzb627rKGl3tRVQEfi9Nhkv+NJ7sMBymANJNdYvScOnmC6WSLgTi2dy6zaJb57F9+gT/74y/wIz/6t3nXe98IIrztW27DVBu0XhC3yyvuPsqRQwPeMLiLwbBiZdVhhrscv2mRNx9+HbaObGxvYhwMR8sgljZGgljaaUtoA8ELYWpY39zg0Moqn3voCbbXPXfceTuvfeUxvC7havjLT30ZY+HWOw9TDxqsEXxoqcwCIcZs/a2INKmxiIqkCssz70TSYHXrEBzTFnYmnhhrtK3wYvBagasxwwqxNdbWiUpxqTHJWocxLhXeyYICk5uesrZ9VlsrWXcZIzk7CTOXqMxPVSq3TQPgLcYIqOtqUyJpHN/MQelgcF0Ed2BPsE7HniJ9tDk4F9ohpuJrTGG3fGxLhnalrDD9LBQ/kvnb7uff5y/v+blwbFGxUh57xotHyRY3RtCYBmZ475NpVrYzDFo4dbB20J1ULIoxAamqVHSNeapOphQ0+q6Q051iKrfnfy2Bbp53Tt8lcddIp5cuBcfyv9lSCN3jxJiDtcuF1Bz85zdBa+ZPSSWol+wEEqU2W9/+mZFajr3zVEuh4HSvB8f8pjG/Ue+vocyf2Mrz8XLn3aMKJhqcs+xOGowoMbQQa0QjxPSZaL2nthWT3TGLi4v4rQYFTp05ShPHmKpF1XDm9FGCn0CsWFtbQ9YOc+nCNk89fRlXBW6+fYUVNyIauLR5gWpYcXxpiUmzS2h3WVxapvVpukZoG4iwfXmXc89MefKJ57jlTEtoKwbDASE0DAeGR7/4LIvLAxYWLaNFh82JjhgHWqHRENVnWjNmp9DiGGqSmZexYFNh00dL08KljQnTFoyrsPUgeSENkxMqxuIGQ5xJ4xux2ZbXzPh0ioTYZulncXXckxDM1XpMeW/PNysVCWQ5KaZNyGaOHc1Uj5TPRrYD+c+piQnIxTHmsvO9nLi1lrbx1C51pmkO8PPdifuD3uxyGaa993dXWseey0JKJXOwKjWB9HvTBfYoOYi6TBu5iqZpOmdFY2eFUIUkLQzpCCpYktOR4JzJNIclRo81WXNeplDFvRvPvP57P/ctIlRZr9s2icqpazsLempmxVxmvL2RvCEaLRWhPTTLHvoqwn6qpNj4iggxJOWTQjcA3chsNi7MtNUaYpe5J+OlvJGmB3veBjO/Wc+f/LpN9waQQ6bmoXTCGg5qDIoXxU8nBO9T9hkDhJCeIx85/9wFjq8e49a7TnLTbWcwI8WHKUZGXHhuCwJYBmxutfjoufDVLR76zDOsrCi333mCtvW4qmLtyAqudoQ2Mt1u8U3EMMLWFSotk6ZhaIesn9/kwtnA+Wdbjh82rK0tYkU5d+4cVb2MNS1EOH1mgbUjyyDZvC+UVn6bCqTic2NVBdliWoxFTJ3rDjCZeiatsrE5ZuwN9XAB3AiqERiHqap8nzRhrPDotqo62s/I7LOSLDJygN/3Hk9K+jSPN2rMvSaFS98/gMPmBCl/gGSuLiWzmlGxBD7od+V1Etz3Ht29D5km8JQl7gnwQm6WULTM09bUCRZL8YK4JwjNHr8My545C6bfWYpxWYGIZNoC9jdCJaS6gCmeJ/mWQUGydW1dp8DcNf7M8cAxFzDR/CYwmia7xoiTkqXPOcnFUoDleRmp5uytKHmSlddsMpGq4lyRcaVO4CBFZinYvPEYk3TmRcMumoo/hbaZnWiyPbOkDSBCaoiae3ZKwTcVwOioICUNHiFvAOW26SnNJwxN7p8h+wOp7N2Q5wP2Xh39XjroRpBDagxYDOPtbZDUtBdCS2h3cWjyXR+PsQLj7R2Mwtqhw6iNLBwZ0rQtsY5YFplsKv/hD5/mq09d4pZbjnPhwpixb7j/da/gnleewLpI024wXM66ejE0uy0xBPzU8ud/8hSH1p7hze9+Je2kxUaYjrdZWazZWd7mtfetsbhoaP2EajTkyPFlIpZ77j2c+i5qxbqIpU7yZglEM8WLQExZeXIFTWMgXeUIIjS+ovWBadPw3IUdqsEqaldZPbKKmhScrauS0Vc1ONGVTgAAGLlJREFUQBFEXKZgkk+S2LJRlHGQ6fOROk7J9Yu9VGIImvzERFJgp7yn5t9bkutcBiU1DKZRlOSuWaUIY4rG/WrUgq6T4H5lKkSy/Wz53Yx/Ldx1solNr0uqeBaevPiFA5hsCXylLG7vBvD1BYH5Hb6sUeaKkvv5/CLZK9RLQckg5v9/MTIL5pTsQrGUx1dUSwE6mXFhBKPJ7z5ZAuQNxJpOOaNa5I9pLidGiH5v676VdHpSSS3U+ymu7k09d32he56XPZu92fWVnvv9haj5+sJ+9cv+12x/Fn/l1+TlnbmHdkLjA6PhkKjpveE1JpVT9Lnj1BK8z/Nzp4leUJPHzblUtA8BvGcy3WJh0bC1tcWz58bUowpTW46fWuSpp55BdIV2Kviwi4aadiJ8+bGzHDuyzH33naEaAl6IbcT7FompS3l1bZEYk4DBVKlD2g6GECIrKyX4eVoNaGwICsbUHfdsswwx5WppEI1XQxuFcWvY2mm5cGmX1cOnqQYLmJyJW1uGUrvUbGRdKqCq5slgmoqlxe46d3arESLZzyjLdiNZ6ZIpxKo0+nXOjpDGROaTvEnKJLKZYdosyPRinleQ1U4w49yLJPIgcZ0E94TZMd93gajI9ApNU27XfcDnpY46a/8tqpX0s3nBD/lLk9WVF+n5boXzGWX5P9Jxj67R54XqBPNUCHFWkS9BVFU6p8SyL5XNxThLDElbXpzx96+nDPktAbl0AZc3aChHT6WTeIokHhRJI8vnu0vnv5eC755naY4fn98Ar3R/5h57//XledrPyc/fr9xuXiX1coVBO8lqbAPRx2RDEDzT8S7WSMqyFaa+IRIIBJw1yb/OpxGEbdNQ1ZZvfsd9nH3qEocOHQH3BOsbG6yu1qytGlZWb2JhYYkQp6lYO50ynVhGw1VaP6Sqpgzqmt3thuBbooakltGK3UmD90kMcP78FnfddSQFdJOVYAJNq/iQM2JrWXRDiJHKJVpDY3YatY7JVGmjYeqF8+s7RCqOnLgNWy3iJQ2MqapBFl/kWb5ZQNC91/N7FeY+S9C5PMaYTr0pE5c0wnOO2kwF++xYKpL16jMapoyP7JLKkrELHfUjxhAlG2PnTcQYe0Uu4KXEdRHcH/ncX22/9tV3f/5ar+NF4ihw4Vov4kWiX2vCrQf0uFcHbcQ5y87OFr5tcWLwfop4j8MwHY/REInBM57uYI3Q6hTvp0QfkzGbpiEp0/EOu9NnecXdRwl+i7e85SjbWwuoP4+PA2xtmYYdQvA0bU4gAjz6hUtcfG6bb3rbbTz46S/xjgfuxgdPjA0hGtopPP7lCWef3uK1953kjrtPoGaMSuCZ57Y4deIIUYWmET716fM4B2/8hjuAiqqKGCdpyHs9YGfiacew2wiXN3dZO3KC1aOHEVsnu11jqdwCMpcNW5s6SxO3ncOananKUvJiuvso0tWKSgBGoKLqnnZjkudMKNJsnfH06e/kDunuRJtaiI1qN9cASYVUk2cNJy+s3Gp8wNH9ugjuwOdV9U3XehEvBiLyiX6tLz1eTmu92hjv7qYJZVJaeZpsx9HSNA0a09QhVcFgaCcTBpWlnSYli/pI9EAwiBpO33wcjYG2VZyfsnvhEmeOneSpZ57j9OljmBhp2sDldQ9iGC0MOXnaMd6tiARe+7rjhDb7OwWDyX/38Kph4BZZWKiJbUBtokVOnT6VpIHRsLg84v43WOrBiNHSQgp6gI+BVgzTMbTe0nhDNAOWDx+miQZTDYk5WFvrCBjIYxwRQY3tjPIkD4VJmbTDGe3uhyY6pgyXKUXPcgeZz8KdBXE4Kd2k0qndUodp4u8RyDxm8p+xc6KC/NA2bziJmk2DRMwBR9/rJbj36NHjBXB527BQRQyeyhna2BJ9C9ETQovPAd63qcDZ7jYMFxcI02z1QI2fwuX1LapasXUkqCcaxQ4MN99+CoLh9Onk9940ymSsrF9oePrZDe677wwnTx9lZeUQC0sWVyV7DgAjVWrGM4KxkaCR0VKyEPHeIHZIO00dnUtLAwKwsLKY5oxag49J6uljTRth0ihqXPJYtyOQ1Hwk1qFoFqFYnFRQqDgpgzSyhtzM+OyilCHz5gXFAkDTjbqfjZlNVip2I8nnyHXqGClupaZ0z5fBIMmPKtUWtJtfMKMjTZfBXw2msA/uPXpc51g58S6eevzTnH/mcRYdLC871laXkbhNaBtC0xBjw6ByTKctdTWiaYRHH32SO15xK5UJPP3kOR5+6AmqQeRt3/L6NCymzUqkQOe730wblArnRpw6PWJpcZnnvrrLwpJj9bBgXTbBEtCY6A1xNaJw8tbjnJIicV3AxlGysagMNQo5ABsMQQ3TNmXG3gs+mtRLUlkwad6vVANUDJA81J1N8wJEku2wUIKy6QK4mJSJV1WiV7xmpVqmSozk8XtiE3dOGiuZpJgpuKvSDQNKPRh5wyDLdXNwTqP2gNKxXXj9PPA9Ue9Fgj3zkhGRzmHyIHG9BPdfutYL+DrQr/Vg8HJa61WFd7dyy12nce6LPPnFT/MXn/o4xw4PuOPMKmeOL6PNFCfgg8cYRxtTP8Qtt93Cs8+exWhk9dAad73yFN4HmsYTPAh1CpBW8D4w9R6xlhjSdca1VAPH5uYYsSMOHx2Q/NOLYCB3l4sm1YlYVNOwGUQwBEKWA4oxBLH4aGlbCFLRhDyyTirUpcsiLtEmKrmb1ObRjrmoiUGszQP1ZvN6y/Sl+cJ6sgdIdr4S84Sx3MSkSNfQVJqXipImPSe2UOmz00ARE+T26W5esMhMOmyytXbeDOZ7UAqSF5UcuFpGXu5Kgh49/lMhIkPgT4ABKdH5DVX9SRG5HfgIsAZ8CviAqjYiMgB+FXgjcBH4O6r6xF/zN/7GH7BHHn6IgRgcARd2WL/4DF/6/EM8+Me/w+1nDvONr70F0TF+uo2tk70FGphOJlw6t86lC+vcctOtaIy0IdDGBowjBgVtkGxv2sQWMGibbXZjw3QKvknNgtUgImaY/I+kAQKI4mMyN3PVIj6kkY1qsukcDp+LuV6FJjh8SNm5V5ey9BxgFZMmodkUPCOJgim21kLyY0nUiev47I7HNraTIRopjUvJeyY1DdZd5h5zQbRk5p37KcnqN8XvosKyM5fHOWVWoXSMSZPKio9MUaal0wBdsTbG1DeQ1myJGvmu7/+Bv+nbA+0m2uxFH9x7/GcLSSneoqpui0gF/BnwD4H/AfgtVf2IiPyfwEOq+osi8iPA61T1vxWR7we+W1X/zl/zN/7GH7BHH3kYiZGBMwTfkBryA/gxmxfO8fgjn+SZp77I6sjw2c88yA983/tpxhsYTc1NzbQhhIAPgbZNUtrBaAlVR+ubxP+KoaotRgJoQwwNsW2JAYKPBN8QNCBSo8EiIXstCfgUhgliiNHi3DBl6I0STYWn6jLlKC5RLZIKoIlETxJGyOMfy1Mmsxm9dHRKKYzmOQIi2Dw3uAxvxyTDOUrGn5uOrHW5gcnmQJ1oGXLh0+THp/SB5E0DNA/bKHx77sfQIs+dOy0knWQnoYSZvUEn9Q6xy9q/43u/5tvnReGFgvv1Qsv06HHVoSmz2c4/VvlLgXcB/2W+/sPA/wL8IvCd+TLAbwA/LyKiB5wh2VzU862HbLAWNGArx8rJBV5/7DRviC0adlk6dgt/8qlH+dIjD/G33v8AoRGMWSG6QPABj+PLT36JixefpXIjzl9Y5+LljTRweqIMR8oP/N13Uw9GRMYYa/DaglaE2KQMPCrCKLXxmyp3KafO0qaJBHFEBviBTYZwajsHj+JjLpIUNqkzO42vi1G7CUg5v01PQJY6JlVMGc6RmoaipsHWZZh1zDYVqYNaO2M7EcGa2eWZjXTuUCUHbGa+TLO+isS9FxVObnHf4+rY+VXl/6/rfi39NaWxTmdNfwfdXHfNg7uIvB/4OZJr7v+lqj99jdfzIeC/AJ5T1XvzdWvAvwRuA54Avk9VL+XM7+eAbwd2gb+vqp+6Suu8mUQRnCSdYH9JVX/uOl3rgdMff4O1WeCTwJ3ALwBfAi6rqs83eRo4ky+fAZ4CUFUvIhvAEQ64l0BIlhxVVSPRoLHNmaMCVXJMdOD9Aq/55u/hNW8LWCLbl8/DdMJk3GAr2N68xMULl2jqwPLJM4gqNx25m9MK2OR1JCFwbn2ZGLZZXV1B1OMGFVpBbQJ1PUJNRTQO1QqkovVpjJyKMKAY0xmqPDGtJmROu8gF04QtI3OyQ0nqE5VUgLTYrimxNAGJEZQ01Me6iiRNJE3vykHd5hnCab6vEmMeABRjp34xWYueaBU7C7QiGGb8ePKEkUzlzAXiYoCXu5VMmYGQfWXiHoVMbsLTmTGfs3bOdOzgcE2De/5g/QLwXtKH6OMi8lFVfeQaLutXgJ8nBZeCHwf+QFV/WkR+PP/8PwLfBtyVv95Myu7efJXW6YF/pKqfEpFl4JMi8vvA378O1zoF3jVPf4jIvyPRHz87R398MK/rg8AlVb0z0x//BPibn1+vAFUNwP0icgj4f4BXX+lm+fuVPo3Py9pF5IeBH36p1hi1DCUJGA15SHbIAUUyX60YWxOCT7QAUK+cwITIgqTOy8WjgRO3C69+/TdDdjTVGIk+WRjE4AkhENo2z7Ft8TGZsafJW+B9up+PER+UGKHG4oPvCo6qig9pbzRiENXcrp89kVL+ninsrBs3KYOfMQwzusNk6qNza5Qc5GOiN6xJG0HnMlpuB5m/Tzp4Y12ylI7aSRLJSpugMbtNtkTS8506o/e8rnsDsk2blRJTcTlKNrzLlgXzBzo7a3byXff6DRzcgW8EHlPVxwFE5COko+81C+6q+icictu+q78TeCBf/jDwMVLA/E7gV/Ox/C9E5JCInFLVs1dhnWeBs/nylog8Ssosr8e1Xvf0h6peFpGPAW8BDomIy9n7TcCz+WZPAzcDT0tqg1wF1q/wWL9EVv+8FJw7+zK8mDlu1ZTFFsfMBAOmJo9nJtokWYwmm75FQc0QjT6ZskkEEzGmRaPHhECwLRTfopAM+shBL3qPUXAxYmOypYghYjWmoTk5iFcx7tkRBSDbWKiQ1px58ywQzHOQZ+ZzHX2BYHQWWCVz5J0KRbIXzfx95gqepchKljiKzuYAKInqsXkofGXLBLGkZU9J/JWCcJY2FoVN3nDKP1x07kVRtCfxn9ukDhLXOrh3x9yMp7l62eTXgxMlCKrqWRE5nq+/0vrPkIPu1ULejF4PPMh1utbrkf4QkWNAmwP7CHgP6ZTwR8D3kCijHwT+Tb7LR/PPf55//4cHzbdDoQdmPuJpaEVqaddML6RVpECTlmTz5TwaUfP9TfYLMhZxyfMlhIC4Ko15jBGp2nS/ELBBUSJVvp11AVFmFtFmzi6amVtp1IhkD6U9WXuhKsr/RWI5Oq6cEiRLVEy6epeDaJRifCd5YzLd8yE5ks5n18W51GbfJ1sGaWQvmViol9yYNDO5m/N5yrr2Iv8sRdTy+5lv1SzAd9LJ4s80t+mU6+MBv3WudXB/Ucfc6xjXfP0isgT8JvBjqrr5NXi8a7rWg6A/XgKcAj6cNx4D/Lqq/raIPAJ8RET+N+DTwC/n2/8y8M9E5DFSxv79B7CmK0BgLhjYfU9PsXkGOh/9dLdEK6SsMuY6YPLXh+LASZ4tYUA0OaiKS1RDiJiYPGtSVdHjqmS0JSGgQXNaPjeFKBuEWegsqGMx5kLzJqTdmICSxZvO5TMVQiWb/alE0qNlfhvFGtsNZM8heG9Az5l3uUpsNgQruvI4o0QiMRVnc5G0NEF1zyd0v58ZAObgbtjT4VqCeMyvQ3r+tVP9pJvOebrf4MG9HHML5o/A1xPOFQpDRE4Bz+Xrr+n6M3/9m8A/V9Xfup7XWvBS0h8vwVo+Szrx7L/+cRJluP/6CfC9L/U6/jp02W8pzsVQ1jOn6JhzPZ1TxpnOKGvm7GmsI8SY2BYjQOrWVIlILHx4sZUGkTY/WAsIGjyYNBc4ophYXFhLNh4px4lUJ9WOgkiPpzmwlalbKdKXwJkIpaRrj5ItrDNvr8zmDJRh7vMx0pgcUFU6D3WMYIlzQ6zz45BmoEqensacQ2o35yEXcdNTarppZulxde7v5hNTmnKT7it7lTfdhqF7A/5B4VpPD/44cJeI3C4iNSkT+ug1XtOVUI7j8Pxj+t+ThLcAG1eDwwbI6pdfBh5V1Z+5ztd6LGfszNEfjzKjP6601vI/XDX647qFGCKGqMlON8Ker45b7hQglMFhiUYgxRwrM17azsv9JDUhIS5ZBFQ12AqxFcY6XD3AVQNcnQZN23qErUdphN1ghB2OsPUQU1XYuqaqR4irwOXHcAOMrdOUpCyfxLg0jNo4jK0wrsLVQ9xgiHUDcA6pK4wd4KoaVw2w5bursVWajWpcjavzV1Wnx6lqbFVhbIVzNc5WeYBGLqraJL00VRmGLXkOb7YkMIJ1aVBI8ayx1mKtwdiUsYvZm413L5UmKwcraeNwNnXZdoHeGKwrBdcbmHPPfOp/B/wu6ez1IVX93LVck4j8GqkgeVREngZ+Evhp4NdF5IPAk8yyt98hSQsfI8kLf+gqLvVtwAeAh0XkM/m6n7hO1/oyoT+uTxQePVEbe7Fnz5OUNc4Ke+lnmT3Q7Gog5IE3qkqIISXXmtvjyZy2pL8fY8CKS8NxchEzeD+jeKzpslbJksJCs5SsXJBcSNVUAN136ogkuaBhbg4uMZ9Y9p5O5kiYPcF1Nh+4ZMhpkM28gibo3GwI2TvwXqXIGOmUOvuH/HRry/x8ue/+eRPlPhFmRmbMqJmDDu59h2qPHgeIl0It88gjj3Rzc40FybQM7Avu+WedowXIappSwExFzjJQXbsuT+8DRmY68O5xw2wWbVLbpE1AM5c+P682+DDjnbNUU3IxMsaYqKXCrZvZWlXTWMioZG+W2FEce+gm2LMhzH/fW2uabYFRFTR0Cht5gWAtkqq6JbjPJqXNNhqY1TeMMUjYOyBmnmbZs+F0tM5er5kYI+/9tm//2i/+i4D29gM9elx9vCRSyB49vgZeKLhfa869R48ePXocAPrg3qNHjx43IPrg3qNHjx43IPrg3qNHjx43IPrg3qNHjx43IPrg3qNHjx43IPrg3qNHjx43IPrg3qNHjx43IPrg3qNHjx43IPrg3qNHjx43IPrg3qNHjx43IPrg3qNHjx43IPrg3qNHjx43IPrg3qNHjx43IPrg3qNHjx43IPrg3qNHjx43IK71gOwePW50bAOfv9aLeBE4Cly41ot4kXi5rPVqrPPWF/pFH9x79DhYfF5V33StF/HXQUQ+8XJYJ7x81nqt19nTMj169OhxA6IP7j169OhxA6IP7j16HCx+6Vov4EXi5bJOePms9ZquU1T74ew9evTocaOhz9x79OjR4wZEH9x79DggiMj7ReTzIvKYiPz4NV7Lh0TkORH5q7nr1kTk90Xki/n74Xy9iMj/ntf9WRF5w1Vc580i8kci8qiIfE5E/uH1uFYRGYrIX4rIQ3md/2u+/nYReTCv81+KSJ2vH+SfH8u/v+2g19gH9x49DgAiYoFfAL4NuAf4uyJyzzVc0q8A79933Y8Df6CqdwF/kH+GtOa78tcPA794ldYI4IF/pKqvBt4C/Gh+3q63tU6Bd6nqfcD9wPtF5C3APwF+Nq/zEvDBfPsPApdU9U7gZ/PtDhR9cO/R42DwjcBjqvq4qjbAR4DvvFaLUdU/Adb3Xf2dwIfz5Q8D3zV3/a9qwl8Ah0Tk1FVa51lV/VS+vAU8Cpy53taa/952/rHKXwq8C/iNF1hnWf9vAO8WETnINfbBvUePg8EZ4Km5n5/O111POKGqZyEFVeB4vv66WHumLl4PPMh1uFYRsSLyGeA54PeBLwGXVdVfYS3dOvPvN4AjB7m+Prj36HEwuFJW9nKRpl3ztYvIEvCbwI+p6ubXuukVrrsqa1XVoKr3AzeRTmqv/hpruerr7IN7jx4Hg6eBm+d+vgl49hqt5YVwrlAY+ftz+fprunYRqUiB/Z+r6m9dz2sFUNXLwMdINYJDIlJsXebX0q0z/36V59NkLyn64N6jx8Hg48BdWT1RA98PfPQar2k/Pgr8YL78g8C/mbv+72UlyluAjUKJHDQyD/3LwKOq+jPX61pF5JiIHMqXR8B7SPWBPwK+5wXWWdb/PcAf6gE3GfVNTD16HBBE5NuBfwpY4EOq+lPXcC2/BjxAcio8B/wk8K+BXwduAZ4EvldV13OA/XmSumYX+CFV/cRVWufbgT8FHgZivvonSLz7dbNWEXkdqUBqSUnyr6vqPxaRV5CK52vAp4H/SlWnIjIE/hmphrAOfL+qPn6ga+yDe48ePXrceOhpmR49evS4AdEH9x49evS4AdEH9x49evS4AdEH9x49evS4AdEH9x49evS4AdEH9x49evS4AdEH9x49evS4AdEH9x49evS4AfH/A2zCUkkaASExAAAAAElFTkSuQmCC\n"
     },
     "metadata": {
      "needs_background": "light"
     }
    }
   ],
   "source": [
    "import numpy as np\n",
    "from PIL import Image\n",
    "import matplotlib.pyplot as plt\n",
    "import mindspore.dataset.vision as vision\n",
    "\n",
    "img_ori = Image.open(\"banana.jpg\").convert(\"RGB\")\n",
    "print(\"Image.type: {}, Image.shape: {}\".format(type(img_ori), img_ori.size))\n",
    "\n",
    "# Apply Resize to input immediately\n",
    "op1 = vision.Resize(size=(320))\n",
    "img = op1(img_ori)\n",
    "print(\"Image.type: {}, Image.shape: {}\".format(type(img), img.size))\n",
    "\n",
    "# Apply CenterCrop to input immediately\n",
    "op2 = vision.CenterCrop((280, 280))\n",
    "img = op2(img)\n",
    "print(\"Image.type: {}, Image.shape: {}\".format(type(img), img.size))\n",
    "\n",
    "# Apply Pad to input immediately\n",
    "op3 = vision.Pad(40)\n",
    "img = op3(img)\n",
    "print(\"Image.type: {}, Image.shape: {}\".format(type(img), img.size))\n",
    "\n",
    "# Show the result\n",
    "plt.subplot(1, 2, 1)\n",
    "plt.imshow(img_ori)\n",
    "plt.title(\"original image\")\n",
    "plt.subplot(1, 2, 2)\n",
    "plt.imshow(img)\n",
    "plt.title(\"transformed image\")\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### text\n",
    "\n",
    "此示例将使用`text`模块中Transforms,对给定文本进行变换。\n",
    "\n",
    "Text Transforms的Eager模式支持`numpy.array`类型数据的作为入参。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "Tokenize result: ['W' 'e' 'l' 'c' 'o' 'm' 'e' ' ' 't' 'o' ' ' 'B' 'e' 'i' 'j' 'i' 'n' 'g'\n ' ' '!']\nToNumber result: [123456], int32\n"
     ]
    }
   ],
   "source": [
    "import mindspore.dataset.text.transforms as text\n",
    "import mindspore as ms\n",
    "\n",
    "# Apply UnicodeCharTokenizer to input immediately\n",
    "txt = \"Welcome to Beijing !\"\n",
    "txt = text.UnicodeCharTokenizer()(txt)\n",
    "print(\"Tokenize result: {}\".format(txt))\n",
    "\n",
    "# Apply ToNumber to input immediately\n",
    "txt = [\"123456\"]\n",
    "to_number = text.ToNumber(ms.int32)\n",
    "txt = to_number(txt)\n",
    "print(\"ToNumber result: {}, type: {}\".format(txt, txt[0].dtype))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### transforms\n",
    "\n",
    "此示例将使用`transforms`模块中通用Transform,对给定数据进行变换。\n",
    "\n",
    "通用Transform的Eager模式支持`numpy.array`类型的数据作为入参。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "Fill result:  [0 0 0 0 0]\nOneHot result:  [0 0 1 0 0]\n"
     ]
    }
   ],
   "source": [
    "import numpy as np\n",
    "import mindspore.dataset.transforms as trans\n",
    "\n",
    "# Apply Fill to input immediately\n",
    "data = np.array([1, 2, 3, 4, 5])\n",
    "fill = trans.Fill(0)\n",
    "data = fill(data)\n",
    "print(\"Fill result: \", data)\n",
    "\n",
    "# Apply OneHot to input immediately\n",
    "label = np.array(2)\n",
    "onehot = trans.OneHot(num_classes=5)\n",
    "label = onehot(label)\n",
    "print(\"OneHot result: \", label)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "MindSpore",
   "language": "python",
   "name": "mindspore"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.6-final"
  },
  "vscode": {
   "interpreter": {
    "hash": "8c9da313289c39257cb28b126d2dadd33153d4da4d524f730c81a4aaccbd2ca7"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}