{ "cells": [ { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "[![在线运行](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.0/resource/_static/logo_modelarts.png)](https://authoring-modelarts-cnnorth4.huaweicloud.com/console/lab?share-url-b64=aHR0cHM6Ly9vYnMuZHVhbHN0YWNrLmNuLW5vcnRoLTQubXlodWF3ZWljbG91ZC5jb20vbWluZHNwb3JlLXdlYnNpdGUvbm90ZWJvb2svcjIuMC90dXRvcmlhbHMvemhfY24vYmVnaW5uZXIvbWluZHNwb3JlX3RyYWluLmlweW5i=&imageid=e225a9aa-230a-4ea5-a538-b5faed64a6a6) [![下载Notebook](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.0/resource/_static/logo_notebook.png)](https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/r2.0/tutorials/zh_cn/beginner/mindspore_train.ipynb) [![下载样例代码](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.0/resource/_static/logo_download_code.png)](https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/r2.0/tutorials/zh_cn/beginner/mindspore_train.py) [![查看源文件](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/website-images/r2.0/resource/_static/logo_source.png)](https://gitee.com/mindspore/docs/blob/r2.0/tutorials/source_zh_cn/beginner/train.ipynb)\n", "\n", "[基本介绍](https://www.mindspore.cn/tutorials/zh-CN/r2.0/beginner/introduction.html) || [快速入门](https://www.mindspore.cn/tutorials/zh-CN/r2.0/beginner/quick_start.html) || [张量 Tensor](https://www.mindspore.cn/tutorials/zh-CN/r2.0/beginner/tensor.html) || [数据集 Dataset](https://www.mindspore.cn/tutorials/zh-CN/r2.0/beginner/dataset.html) || [数据变换 Transforms](https://www.mindspore.cn/tutorials/zh-CN/r2.0/beginner/transforms.html) || [网络构建](https://www.mindspore.cn/tutorials/zh-CN/r2.0/beginner/model.html) || [函数式自动微分](https://www.mindspore.cn/tutorials/zh-CN/r2.0/beginner/autograd.html) || **模型训练** || [保存与加载](https://www.mindspore.cn/tutorials/zh-CN/r2.0/beginner/save_load.html)" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "# 模型训练\n", "\n", "模型训练一般分为四个步骤:\n", "\n", "1. 构建数据集。\n", "2. 定义神经网络模型。\n", "3. 定义超参、损失函数及优化器。\n", "4. 输入数据集进行训练与评估。\n", "\n", "现在我们有了数据集和模型后,可以进行模型的训练与评估。" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## 必要前提\n", "\n", "首先从[数据集 Dataset](https://www.mindspore.cn/tutorials/zh-CN/r2.0/beginner/dataset.html)和[网络构建](https://www.mindspore.cn/tutorials/zh-CN/r2.0/beginner/model.html)中加载先前代码。" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip (10.3 MB)\n", "\n", "file_sizes: 100%|██████████████████████████| 10.8M/10.8M [00:05<00:00, 2.07MB/s]\n", "Extracting zip file...\n", "Successfully downloaded / unzipped to ./\n" ] } ], "source": [ "import mindspore\n", "from mindspore import nn\n", "from mindspore.dataset import vision, transforms\n", "from mindspore.dataset import MnistDataset\n", "\n", "# Download data from open datasets\n", "from download import download\n", "\n", "url = \"https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/\" \\\n", " \"notebook/datasets/MNIST_Data.zip\"\n", "path = download(url, \"./\", kind=\"zip\", replace=True)\n", "\n", "\n", "def datapipe(path, batch_size):\n", " image_transforms = [\n", " vision.Rescale(1.0 / 255.0, 0),\n", " vision.Normalize(mean=(0.1307,), std=(0.3081,)),\n", " vision.HWC2CHW()\n", " ]\n", " label_transform = transforms.TypeCast(mindspore.int32)\n", "\n", " dataset = MnistDataset(path)\n", " dataset = dataset.map(image_transforms, 'image')\n", " dataset = dataset.map(label_transform, 'label')\n", " dataset = dataset.batch(batch_size)\n", " return dataset\n", "\n", "train_dataset = datapipe('MNIST_Data/train', batch_size=64)\n", "test_dataset = datapipe('MNIST_Data/test', batch_size=64)\n", "\n", "class Network(nn.Cell):\n", " def __init__(self):\n", " super().__init__()\n", " self.flatten = nn.Flatten()\n", " self.dense_relu_sequential = nn.SequentialCell(\n", " nn.Dense(28*28, 512),\n", " nn.ReLU(),\n", " nn.Dense(512, 512),\n", " nn.ReLU(),\n", " nn.Dense(512, 10)\n", " )\n", "\n", " def construct(self, x):\n", " x = self.flatten(x)\n", " logits = self.dense_relu_sequential(x)\n", " return logits\n", "\n", "model = Network()" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## 超参\n", "\n", "超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。目前深度学习模型多采用批量随机梯度下降算法进行优化,随机梯度下降算法的原理如下:\n", "\n", "$$w_{t+1}=w_{t}-\\eta \\frac{1}{n} \\sum_{x \\in \\mathcal{B}} \\nabla l\\left(x, w_{t}\\right)$$\n", "\n", "公式中,$n$是批量大小(batch size),$η$是学习率(learning rate)。另外,$w_{t}$为训练轮次$t$中的权重参数,$\\nabla l$为损失函数的导数。除了梯度本身,这两个因子直接决定了模型的权重更新,从优化本身来看,它们是影响模型性能收敛最重要的参数。一般会定义以下超参用于训练:\n", "\n", "- **训练轮次(epoch)**:训练时遍历数据集的次数。\n", "\n", "- **批次大小(batch size)**:数据集进行分批读取训练,设定每个批次数据的大小。batch size过小,花费时间多,同时梯度震荡严重,不利于收敛;batch size过大,不同batch的梯度方向没有任何变化,容易陷入局部极小值,因此需要选择合适的batch size,可以有效提高模型精度、全局收敛。\n", "\n", "- **学习率(learning rate)**:如果学习率偏小,会导致收敛的速度变慢,如果学习率偏大,则可能会导致训练不收敛等不可预测的结果。梯度下降法被广泛应用在最小化模型误差的参数优化算法上。梯度下降法通过多次迭代,并在每一步中最小化损失函数来预估模型的参数。学习率就是在迭代过程中,会控制模型的学习进度。" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "epochs = 3\n", "batch_size = 64\n", "learning_rate = 1e-2" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "## 训练流程\n", "\n", "设置了超参后,我们就可以循环输入数据来训练模型。一次数据集的完整迭代循环称为一轮(epoch)。每轮执行训练时包括两个步骤:\n", "\n", "1. 训练:迭代训练数据集,并尝试收敛到最佳参数。\n", "2. 验证/测试:迭代测试数据集,以检查模型性能是否提升。\n", "\n", "接下来我们来逐步实现完整的训练流程。" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "### 损失函数\n", "\n", "损失函数(loss function)用于评估模型的预测值(logits)和目标值(targets)之间的误差。训练模型时,随机初始化的神经网络模型开始时会预测出错误的结果。损失函数会评估预测结果与目标值的相异程度,模型训练的目标即为降低损失函数求得的误差。\n", "\n", "常见的损失函数包括用于回归任务的`nn.MSELoss`(均方误差)和用于分类的`nn.NLLLoss`(负对数似然)等。 `nn.CrossEntropyLoss` 结合了`nn.LogSoftmax`和`nn.NLLLoss`,可以对logits 进行归一化并计算预测误差。" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "loss_fn = nn.CrossEntropyLoss()" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "### 优化器\n", "\n", "模型优化(Optimization)是在每个训练步骤中调整模型参数以减少模型误差的过程。MindSpore提供多种优化算法的实现,称之为优化器(Optimizer)。优化器内部定义了模型的参数优化过程(即梯度如何更新至模型参数),所有优化逻辑都封装在优化器对象中。在这里,我们使用SGD(Stochastic Gradient Descent)优化器。\n", "\n", "我们通过`model.trainable_params()`方法获得模型的可训练参数,并传入学习率超参来初始化优化器。" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "> 在训练过程中,通过微分函数可计算获得参数对应的梯度,将其传入优化器中即可实现参数优化,具体形态如下:\n", ">\n", "> grads = grad_fn(inputs)\n", ">\n", "> optimizer(grads)\n" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "### 训练与评估实现\n", "\n", "接下来我们定义用于训练的`train_loop`函数和用于测试的`test_loop`函数。" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "使用函数式自动微分,需先定义正向函数`forward_fn`,使用`mindspore.value_and_grad`获得微分函数`grad_fn`。然后,我们将微分函数和优化器的执行封装为`train_step`函数,接下来循环迭代数据集进行训练即可。" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "# Define forward function\n", "def forward_fn(data, label):\n", " logits = model(data)\n", " loss = loss_fn(logits, label)\n", " return loss, logits\n", "\n", "# Get gradient function\n", "grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)\n", "\n", "# Define function of one-step training\n", "def train_step(data, label):\n", " (loss, _), grads = grad_fn(data, label)\n", " optimizer(grads)\n", " return loss\n", "\n", "def train_loop(model, dataset):\n", " size = dataset.get_dataset_size()\n", " model.set_train()\n", " for batch, (data, label) in enumerate(dataset.create_tuple_iterator(num_epochs=1)):\n", " loss = train_step(data, label)\n", "\n", " if batch % 100 == 0:\n", " loss, current = loss.asnumpy(), batch\n", " print(f\"loss: {loss:>7f} [{current:>3d}/{size:>3d}]\")" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "`test_loop`函数同样需循环遍历数据集,调用模型计算loss和Accuray并返回最终结果。" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "def test_loop(model, dataset, loss_fn):\n", " num_batches = dataset.get_dataset_size()\n", " model.set_train(False)\n", " total, test_loss, correct = 0, 0, 0\n", " for data, label in dataset.create_tuple_iterator(num_epochs=1):\n", " pred = model(data)\n", " total += len(data)\n", " test_loss += loss_fn(pred, label).asnumpy()\n", " correct += (pred.argmax(1) == label).asnumpy().sum()\n", " test_loss /= num_batches\n", " correct /= total\n", " print(f\"Test: \\n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \\n\")" ] }, { "cell_type": "markdown", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "我们将实例化的损失函数和优化器传入`train_loop`和`test_loop`中。训练3轮并输出loss和Accuracy,查看性能变化。" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1\n", "-------------------------------\n", "loss: 2.302806 [ 0/938]\n", "loss: 2.285086 [100/938]\n", "loss: 2.264712 [200/938]\n", "loss: 2.174010 [300/938]\n", "loss: 1.931853 [400/938]\n", "loss: 1.340721 [500/938]\n", "loss: 0.953515 [600/938]\n", "loss: 0.756860 [700/938]\n", "loss: 0.756263 [800/938]\n", "loss: 0.463846 [900/938]\n", "Test: \n", " Accuracy: 84.7%, Avg loss: 0.527155 \n", "\n", "Epoch 2\n", "-------------------------------\n", "loss: 0.479126 [ 0/938]\n", "loss: 0.437443 [100/938]\n", "loss: 0.685504 [200/938]\n", "loss: 0.395121 [300/938]\n", "loss: 0.550566 [400/938]\n", "loss: 0.459457 [500/938]\n", "loss: 0.293049 [600/938]\n", "loss: 0.422102 [700/938]\n", "loss: 0.333153 [800/938]\n", "loss: 0.412182 [900/938]\n", "Test: \n", " Accuracy: 90.5%, Avg loss: 0.335083 \n", "\n", "Epoch 3\n", "-------------------------------\n", "loss: 0.207366 [ 0/938]\n", "loss: 0.343559 [100/938]\n", "loss: 0.391145 [200/938]\n", "loss: 0.317566 [300/938]\n", "loss: 0.200746 [400/938]\n", "loss: 0.445798 [500/938]\n", "loss: 0.603720 [600/938]\n", "loss: 0.170811 [700/938]\n", "loss: 0.411954 [800/938]\n", "loss: 0.315902 [900/938]\n", "Test: \n", " Accuracy: 91.9%, Avg loss: 0.279034 \n", "\n", "Done!\n" ] } ], "source": [ "loss_fn = nn.CrossEntropyLoss()\n", "optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)\n", "\n", "for t in range(epochs):\n", " print(f\"Epoch {t+1}\\n-------------------------------\")\n", " train_loop(model, train_dataset)\n", " test_loop(model, test_dataset, loss_fn)\n", "print(\"Done!\")" ] } ], "metadata": { "kernelspec": { "display_name": "MindSpore", "language": "python", "name": "mindspore" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.5 (default, Oct 25 2019, 15:51:11) \n[GCC 7.3.0]" }, "vscode": { "interpreter": { "hash": "8c9da313289c39257cb28b126d2dadd33153d4da4d524f730c81a4aaccbd2ca7" } } }, "nbformat": 4, "nbformat_minor": 4 }