基本介绍 || 快速入门 || 张量 Tensor || 数据集 Dataset || 数据变换 Transforms || 网络构建 || 函数式自动微分 || 模型训练 || 保存与加载
模型训练
模型训练一般分为四个步骤:
构建数据集。
定义神经网络模型。
定义超参、损失函数及优化器。
输入数据集进行训练与评估。
现在我们有了数据集和模型后,可以进行模型的训练与评估。
必要前提
首先从数据集 Dataset和网络构建中加载先前代码。
[8]:
import mindspore
from mindspore import nn
from mindspore import ops
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset
# Download data from open datasets
from download import download
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
"notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)
def datapipe(path, batch_size):
image_transforms = [
vision.Rescale(1.0 / 255.0, 0),
vision.Normalize(mean=(0.1307,), std=(0.3081,)),
vision.HWC2CHW()
]
label_transform = transforms.TypeCast(mindspore.int32)
dataset = MnistDataset(path)
dataset = dataset.map(image_transforms, 'image')
dataset = dataset.map(label_transform, 'label')
dataset = dataset.batch(batch_size)
return dataset
train_dataset = datapipe('MNIST_Data/train', 64)
test_dataset = datapipe('MNIST_Data/test', 64)
class Network(nn.Cell):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.dense_relu_sequential = nn.SequentialCell(
nn.Dense(28*28, 512),
nn.ReLU(),
nn.Dense(512, 512),
nn.ReLU(),
nn.Dense(512, 10)
)
def construct(self, x):
x = self.flatten(x)
logits = self.dense_relu_sequential(x)
return logits
model = Network()
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip (10.3 MB)
file_sizes: 100%|██████████████████████████| 10.8M/10.8M [00:05<00:00, 2.07MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./
超参
超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。目前深度学习模型多采用批量随机梯度下降算法进行优化,随机梯度下降算法的原理如下:
公式中,\(n\)是批量大小(batch size),\(η\)是学习率(learning rate)。另外,\(w_{t}\)为训练轮次\(t\)中的权重参数,\(\nabla l\)为损失函数的导数。除了梯度本身,这两个因子直接决定了模型的权重更新,从优化本身来看,它们是影响模型性能收敛最重要的参数。一般会定义以下超参用于训练:
训练轮次(epoch):训练时遍历数据集的次数。
批次大小(batch size):数据集进行分批读取训练,设定每个批次数据的大小。batch size过小,花费时间多,同时梯度震荡严重,不利于收敛;batch size过大,不同batch的梯度方向没有任何变化,容易陷入局部极小值,因此需要选择合适的batch size,可以有效提高模型精度、全局收敛。
学习率(learning rate):如果学习率偏小,会导致收敛的速度变慢,如果学习率偏大,则可能会导致训练不收敛等不可预测的结果。梯度下降法被广泛应用在最小化模型误差的参数优化算法上。梯度下降法通过多次迭代,并在每一步中最小化损失函数来预估模型的参数。学习率就是在迭代过程中,会控制模型的学习进度。
[9]:
epochs = 10
batch_size = 32
learning_rate = 1e-2
训练流程
设置了超参后,我们就可以循环输入数据来训练模型。一次数据集的完整迭代循环称为一轮(epoch)。每轮执行训练时包括两个步骤:
训练:迭代训练数据集,并尝试收敛到最佳参数。
验证/测试:迭代测试数据集,以检查模型性能是否提升。
接下来我们来逐步实现完整的训练流程。
损失函数
损失函数(loss function)用于评估模型的预测值(logits)和目标值(targets)之间的误差。训练模型时,随机初始化的神经网络模型开始时会预测出错误的结果。损失函数会评估预测结果与目标值的相异程度,模型训练的目标即为降低损失函数求得的误差。
常见的损失函数包括用于回归任务的nn.MSELoss
(均方误差)和用于分类的nn.NLLLoss
(负对数似然)等。 nn.CrossEntropyLoss
结合了nn.LogSoftmax
和nn.NLLLoss
,可以对logits 进行归一化并计算预测误差。
[10]:
loss_fn = nn.CrossEntropyLoss()
优化器
模型优化(Optimization)是在每个训练步骤中调整模型参数以减少模型误差的过程。MindSpore提供多种优化算法的实现,称之为优化器(Optimizer)。优化器内部定义了模型的参数优化过程(即梯度如何更新至模型参数),所有优化逻辑都封装在优化器对象中。在这里,我们使用SGD(Stochastic Gradient Descent)优化器。
我们通过model.trainable_params()
方法获得模型的可训练参数,并传入学习率超参来初始化优化器。
[11]:
optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)
在训练过程中,通过微分函数可计算获得参数对应的梯度,将其传入优化器中即可实现参数优化,具体形态如下:
grads = grad_fn(inputs)
optimizer(grads)
训练与评估实现
接下来我们定义用于训练的train_loop
函数和用于测试的test_loop
函数。
使用函数式自动微分,需先定义正向函数forward_fn
,使用mindspore.value_and_grad
获得微分函数grad_fn
。然后,我们将微分函数和优化器的执行封装为train_step
函数,接下来循环迭代数据集进行训练即可。
[12]:
def train_loop(model, dataset, loss_fn, optimizer):
# Define forward function
def forward_fn(data, label):
logits = model(data)
loss = loss_fn(logits, label)
return loss, logits
# Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
# Define function of one-step training
def train_step(data, label):
(loss, _), grads = grad_fn(data, label)
loss = ops.depend(loss, optimizer(grads))
return loss
size = dataset.get_dataset_size()
model.set_train()
for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
loss = train_step(data, label)
if batch % 100 == 0:
loss, current = loss.asnumpy(), batch
print(f"loss: {loss:>7f} [{current:>3d}/{size:>3d}]")
test_loop
函数同样需循环遍历数据集,调用模型计算loss和Accuray并返回最终结果。
[13]:
def test_loop(model, dataset, loss_fn):
num_batches = dataset.get_dataset_size()
model.set_train(False)
total, test_loss, correct = 0, 0, 0
for data, label in dataset.create_tuple_iterator():
pred = model(data)
total += len(data)
test_loss += loss_fn(pred, label).asnumpy()
correct += (pred.argmax(1) == label).asnumpy().sum()
test_loss /= num_batches
correct /= total
print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
我们将实例化的损失函数和优化器传入train_loop
和test_loop
中。训练3轮并输出loss和Accuracy,查看性能变化。
[14]:
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), learning_rate=learning_rate)
epochs = 3
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train_loop(model, train_dataset, loss_fn, optimizer)
test_loop(model, test_dataset, loss_fn)
print("Done!")
Epoch 1
-------------------------------
loss: 2.302806 [ 0/938]
loss: 2.285086 [100/938]
loss: 2.264712 [200/938]
loss: 2.174010 [300/938]
loss: 1.931853 [400/938]
loss: 1.340721 [500/938]
loss: 0.953515 [600/938]
loss: 0.756860 [700/938]
loss: 0.756263 [800/938]
loss: 0.463846 [900/938]
Test:
Accuracy: 84.7%, Avg loss: 0.527155
Epoch 2
-------------------------------
loss: 0.479126 [ 0/938]
loss: 0.437443 [100/938]
loss: 0.685504 [200/938]
loss: 0.395121 [300/938]
loss: 0.550566 [400/938]
loss: 0.459457 [500/938]
loss: 0.293049 [600/938]
loss: 0.422102 [700/938]
loss: 0.333153 [800/938]
loss: 0.412182 [900/938]
Test:
Accuracy: 90.5%, Avg loss: 0.335083
Epoch 3
-------------------------------
loss: 0.207366 [ 0/938]
loss: 0.343559 [100/938]
loss: 0.391145 [200/938]
loss: 0.317566 [300/938]
loss: 0.200746 [400/938]
loss: 0.445798 [500/938]
loss: 0.603720 [600/938]
loss: 0.170811 [700/938]
loss: 0.411954 [800/938]
loss: 0.315902 [900/938]
Test:
Accuracy: 91.9%, Avg loss: 0.279034
Done!