在OpenI运行下载Notebook下载样例代码查看源文件

基本介绍 || 快速入门 || 张量 Tensor || 数据集 Dataset || 数据变换 Transforms || 网络构建 || 函数式自动微分 || 模型训练 || 保存与加载

快速入门

本节通过MindSpore的API来快速实现一个简单的深度学习模型。若想要深入了解MindSpore的使用方法,请参阅各节最后提供的参考链接。

[1]:
import mindspore
from mindspore import nn
from mindspore import ops
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset

处理数据集

MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)数据变换(Transforms)实现高效的数据预处理。在本教程中,我们使用Mnist数据集,自动下载完成后,使用mindspore.dataset提供的数据变换进行预处理。

本章节中的示例代码依赖download,可使用命令pip install download安装。如本文档以Notebook运行时,完成安装后需要重启kernel才能执行后续代码。

[2]:
# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip (10.3 MB)

file_sizes: 100%|██████████████████████████| 10.8M/10.8M [00:01<00:00, 6.73MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./

数据下载完成后,获得数据集对象。

[3]:
train_dataset = MnistDataset('MNIST_Data/train')
test_dataset = MnistDataset('MNIST_Data/test')

打印数据集中包含的数据列名,用于dataset的预处理。

[4]:
print(train_dataset.get_col_names())
['image', 'label']

MindSpore的dataset使用数据处理流水线(Data Processing Pipeline),需指定map、batch、shuffle等操作。这里我们使用map对图像数据及标签进行变换处理,然后将处理好的数据集打包为大小为64的batch。

[5]:
def datapipe(dataset, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = dataset.map(image_transforms, 'image')
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset
[6]:
# Map vision transforms and batch dataset
train_dataset = datapipe(train_dataset, 64)
test_dataset = datapipe(test_dataset, 64)

使用create_tuple_iteratorcreate_dict_iterator对数据集进行迭代。

[7]:
for image, label in test_dataset.create_tuple_iterator():
    print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
    print(f"Shape of label: {label.shape} {label.dtype}")
    break
Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32
[8]:
for data in test_dataset.create_dict_iterator():
    print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
    print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
    break
Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32

更多细节详见数据集 Dataset数据变换 Transforms

网络构建

mindspore.nn类是构建所有网络的基类,也是网络的基本单元。当用户需要自定义网络时,可以继承nn.Cell类,并重写__init__方法和construct方法。__init__包含所有网络层的定义,construct中包含数据(Tensor)的变换过程(即计算图的构造过程)。

[9]:
# Define model
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()
print(model)
Network<
  (flatten): Flatten<>
  (dense_relu_sequential): SequentialCell<
    (0): Dense<input_channels=784, output_channels=512, has_bias=True>
    (1): ReLU<>
    (2): Dense<input_channels=512, output_channels=512, has_bias=True>
    (3): ReLU<>
    (4): Dense<input_channels=512, output_channels=10, has_bias=True>
    >
  >

更多细节详见网络构建

模型训练

[10]:
# Instantiate loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)

在模型训练中,一个完整的训练过程(step)需要实现以下三步:

  1. 正向计算:模型预测结果(logits),并与正确标签(label)求预测损失(loss)。

  2. 反向传播:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。

  3. 参数优化:将梯度更新到参数上。

MindSpore使用函数式自动微分机制,因此针对上述步骤需要实现:

  1. 正向计算函数定义。

  2. 通过函数变换获得梯度计算函数。

  3. 训练函数定义,执行正向计算、反向传播和参数优化。

[11]:
def train(model, dataset, loss_fn, optimizer):
    # Define forward function
    def forward_fn(data, label):
        logits = model(data)
        loss = loss_fn(logits, label)
        return loss, logits

    # Get gradient function
    grad_fn = ops.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

    # Define function of one-step training
    def train_step(data, label):
        (loss, _), grads = grad_fn(data, label)
        loss = ops.depend(loss, optimizer(grads))
        return loss

    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

除训练外,我们定义测试函数,用来评估模型的性能。

[12]:
def test(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

训练过程需多次迭代数据集,一次完整的迭代称为一轮(epoch)。在每一轮,遍历训练集进行训练,结束后使用测试集进行预测。打印每一轮的loss值和预测准确率(Accuracy),可以看到loss在不断下降,Accuracy在不断提高。

[13]:
epochs = 3
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model, train_dataset, loss_fn, optimizer)
    test(model, test_dataset, loss_fn)
print("Done!")
Epoch 1
-------------------------------
loss: 2.302088  [  0/938]
loss: 2.290692  [100/938]
loss: 2.266338  [200/938]
loss: 2.205240  [300/938]
loss: 1.907198  [400/938]
loss: 1.455603  [500/938]
loss: 0.861103  [600/938]
loss: 0.767219  [700/938]
loss: 0.422253  [800/938]
loss: 0.513922  [900/938]
Test:
 Accuracy: 83.8%, Avg loss: 0.529534

Epoch 2
-------------------------------
loss: 0.580867  [  0/938]
loss: 0.479347  [100/938]
loss: 0.677991  [200/938]
loss: 0.550141  [300/938]
loss: 0.226565  [400/938]
loss: 0.314738  [500/938]
loss: 0.298739  [600/938]
loss: 0.459540  [700/938]
loss: 0.332978  [800/938]
loss: 0.406709  [900/938]
Test:
 Accuracy: 90.2%, Avg loss: 0.334828

Epoch 3
-------------------------------
loss: 0.461890  [  0/938]
loss: 0.242303  [100/938]
loss: 0.281414  [200/938]
loss: 0.207835  [300/938]
loss: 0.206000  [400/938]
loss: 0.409646  [500/938]
loss: 0.193608  [600/938]
loss: 0.217575  [700/938]
loss: 0.212817  [800/938]
loss: 0.202862  [900/938]
Test:
 Accuracy: 91.9%, Avg loss: 0.280962

Done!

更多细节详见模型训练

保存模型

模型训练完成后,需要将其参数进行保存。

[14]:
# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")
Saved Model to model.ckpt

加载模型

加载保存的权重分为两步:

  1. 重新实例化模型对象,构造模型。

  2. 加载模型参数,并将其加载至模型上。

[15]:
# Instantiate a random initialized model
model = Network()
# Load checkpoint and load parameter to model
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)
[]

param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。

加载后的模型可以直接用于预测推理。

[16]:
model.set_train(False)
for data, label in test_dataset:
    pred = model(data)
    predicted = pred.argmax(1)
    print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
    break
Predicted: "Tensor(shape=[10], dtype=Int32, value= [3, 9, 6, 1, 6, 7, 4, 5, 2, 2])", Actual: "Tensor(shape=[10], dtype=Int32, value= [3, 9, 6, 1, 6, 7, 4, 5, 2, 2])"

更多细节详见保存与加载