# 进程优雅退出 [](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/train_availability/graceful_exit.md) ## 概述 当训练集群中存在亚健康设备时,如果能在亚健康设备发生故障之前完成 checkpoint 保存并结束集群训练进程,可以有效避免集群损坏时的权重数据丢失问题。同时,这也可以避免训练恢复时的数据回滚和 checkpoint 加载回滚等问题,从而减少训练资源的浪费。 > 本文档介绍进程优雅退出功能的使用方法。为了说明具体使用方式,以在第一个训练step时检测到退出配置信息并提前结束训练进程为例。您可以在这里下载完整代码:[process_graceful_exit](https://gitee.com/mindspore/docs/tree/master/docs/sample_code/graceful_exit/)。 其中,`graceful_exit.py` 为训练脚本,`train.sh` 为 `msrun` 启动脚本,`graceful_exit.json` 为优雅退出配置文件。 ## 数据和模型准备 ### 准备数据 下载MNIST数据集,并解压数据集到项目目录。 ```bash wget http://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip unzip MNIST_Data.zip ``` ### 模型定义 ```python import os import mindspore as ms import mindspore.context as context import mindspore.dataset as ds import mindspore.dataset.transforms as C import mindspore.dataset.vision as CV import mindspore.nn as nn from mindspore.common import dtype as mstype from mindspore.dataset.vision import Inter from mindspore.train import Accuracy from mindspore.train import Model, LossMonitor from mindspore.train.callback import OnRequestExit from mindspore.common.initializer import TruncatedNormal from mindspore.communication.management import init from mindspore.context import ParallelMode context.set_context(mode=context.GRAPH_MODE) # 数据集 DATASET_PATH = "./MNIST_Data" def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1): """ create dataset for train or test """ # define dataset mnist_ds = ds.MnistDataset(data_path) resize_height, resize_width = 32, 32 rescale = 1.0 / 255.0 shift = 0.0 rescale_nml = 1 / 0.3081 shift_nml = -1 * 0.1307 / 0.3081 # define map operations resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) rescale_op = CV.Rescale(rescale, shift) hwc2chw_op = CV.HWC2CHW() type_cast_op = C.TypeCast(mstype.int32) # apply map operations on images mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # apply DatasetOps buffer_size = 10000 mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds # 定义网络模型 def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): """weight initial for conv layer""" weight = weight_variable() return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="valid") def fc_with_initialize(input_channels, out_channels): """weight initial for fc layer""" weight = weight_variable() bias = weight_variable() return nn.Dense(input_channels, out_channels, weight, bias) def weight_variable(): """weight initial""" return TruncatedNormal(0.02) class LeNet5(nn.Cell): def __init__(self, num_class=10, channel=1): super(LeNet5, self).__init__() self.num_class = num_class self.conv1 = conv(channel, 6, 5) self.conv2 = conv(6, 16, 5) self.fc1 = fc_with_initialize(16 * 5 * 5, 120) self.fc2 = fc_with_initialize(120, 84) self.fc3 = fc_with_initialize(84, self.num_class) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten() def construct(self, x): x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.flatten(x) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x ``` ## 环境变量以及Callback函数 ### 环境变量 开启进程优雅退出功能,需要设置环境变量 `MS_ENABLE_GRACEFUL_EXIT=1`。该环境变量可以控制同步算子入图,来保证所有的训练进程可以同步退出。 ```bash export MS_ENABLE_GRACEFUL_EXIT=1 ``` ### Callback函数 除了设置上述环境变量外,还需要设置 `OnRequestExit` Callback 函数,并通过参数 `config_file` 指定优雅退出配置文件的路径。该函数会在训练进程的每个 step 开始时检查指定目录下是否存在优雅退出配置文件。如果存在配置文件且文件中的关键字 `GracefulExit` 值为 `1`,则会在 step 结束时保存 checkpoint 文件并退出训练进程。 配置文件中的关键字 `GracefulExit` 是在训练过程中动态配置的,通常在识别到训练集群中存在亚健康设备且需要退出训练进程时进行修改。 ```python # json文件中关键字:{"GracefulExit": 1} config_json = r"./graceful_exit.json" # 设置callback函数 cb = OnRequestExit(file_name="LeNet", config_file=config_json) ``` 另外,在配置 `OnRequestExit` callback函数时,保存mindir、保存checkpoint以及其他配置参数可以根据需要自行配置,详情参见[OnRequestExit](https://www.mindspore.cn/docs/zh-CN/master/api_python/train/mindspore.train.OnRequestExit.html) 。 ```python def graceful_exit_case(): # init device_num = 8 context.set_context(mode=context.GRAPH_MODE) ms.set_device("Ascend") context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_num) init() # build network = LeNet5(10) ds_train = create_dataset(os.path.join(DATASET_PATH, "train"), 32, 1) net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9) model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) # graceful exit json file:{"GracefulExit": 1} reset_json = r"./graceful_exit.json" # callback cb = OnRequestExit(file_name="LeNet", config_file=reset_json) # train model.train(1, ds_train, callbacks=[cb, LossMonitor()], dataset_sink_mode=False) ``` ## 启动训练 使用 `msrun` 命令启动训练。 ```bash msrun --worker_num=8 --local_worker_num=8 --master_addr=127.0.0.1 --master_port=10970 --join=True --log_dir=./comm_subgraph_logs graceful_exit_case.py ``` ## 结果分析 训练结束后,日志中会有如下WARNING打印:`Graceful exit is triggered, stop training` 。 同时,在当前执行目录下,会生成有 `rank_0` 至 `rank_7` 8个目录,每个目录下都有一个 `LeNet_train.ckpt` 文件(如果callback里面配置了保存checkpoint)。 ```text ./rank_0 ├── LeNet_train.ckpt └── LeNet_train.mindir ./rank_1 ├── LeNet_train.ckpt └── LeNet_train.mindir ./rank_2 ├── LeNet_train.ckpt └── LeNet_train.mindir ./rank_3 ├── LeNet_train.ckpt └── LeNet_train.mindir ./rank_4 ├── LeNet_train.ckpt └── LeNet_train.mindir ./rank_5 ├── LeNet_train.ckpt └── LeNet_train.mindir ./rank_6 ├── LeNet_train.ckpt └── LeNet_train.mindir ./rank_7 ├── LeNet_train.ckpt └── LeNet_train.mindir ``` ## 说明 如果没有重写 TrainOneStepCell,则只需要配置 `MS_ENABLE_GRACEFUL_EXIT` 环境变量和 `OnRequestExit` callback 函数,并在训练的某一时刻按需修改优雅退出配置文件,即可实现进程优雅退出功能。 如果网络模型需要重写TrainOneStepCell,则: 1. 继承父类TrainOneStepCell,construct方法里面添加如下 `if` 条件分支代码来保证优雅退出功能可以正常运行(继承于TrainOneStepCell,可以直接使用这些成员变量): ```python class TrainOneStepCellWithABC(TrainOneStepCell): def __init__(self, ...): ... def construct(self, *inputs): ... grads = self.grad(self.network, self.weights)(*inputs, sens) if self.use_graceful_exit: grads = self.graceful_exit.exit_by_request(grads, self.init_param, self.exit_param) loss = F.depend(loss, self.optimizer(grads)) ... ``` 2. 没有继承父类TrainOneStepCell,需要在 `__init__` 方法里面新增如下代码(parameter的name不要修改),并在 `construct` 方法里面调用。示例代码如下: ```python from mindspore.utils import ExitByRequest class TrainOneStepCellWithABC(Cell): def __init__(self, ...): ... self.use_graceful_exit = os.environ.get("MS_ENABLE_GRACEFUL_EXIT") == "1" if self.use_graceful_exit: self.graceful_exit = ExitByRequest() self.exit_param = Parameter(Tensor(False, mstype.bool_), name="graceful_exit") # update by reduce value self.init_param = Parameter(Tensor([0], mstype.int32), name="graceful_init") # update by config file def construct(self, *inputs): ... if self.use_graceful_exit: grads = self.graceful_exit.exit_by_request(grads, self.init_param, self.exit_param) loss = F.depend(loss, self.optimizer(grads)) ... ```