{ "cells": [ { "cell_type": "markdown", "id": "92f214fe", "metadata": {}, "source": [ "# 图模式语法-python内置函数\n", "\n", "[](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/compile/mindspore_python_builtin_functions.ipynb) [](https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/master/tutorials/zh_cn/compile/mindspore_python_builtin_functions.py) [](https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/compile/python_builtin_functions.ipynb)\n", "\n", "当前静态图模式支持的Python内置函数包括:`int`、`float`、`bool`、`str`、`tuple`、`list`、`dict`、`getattr`、`hasattr`、`len`、`isinstance`、`all`、`any`、`round`、`max`、`min`、`sum`、`abs`、`map`、`zip`、`range`、`enumerate`、`super`、`pow`、`print`、`filter`、`type`。图模式下内置函数的使用方法与对应的Python内置函数类似。\n", "\n", "## int\n", "\n", "功能:返回一个基于数字或字符串构造的整数对象。\n", "\n", "调用:`int(x=0, base=10)`,默认转换成十进制。\n", "\n", "入参:\n", "\n", "- `x` - 需要被转换为整数的对象,支持类型为`int`、`float`、`bool`、`str`、`Tensor`以及第三方对象(例如`numpy.ndarray`)。\n", "\n", "- `base` - 待转换进制,只有在`x`为常量`str`的时候,才可以设置该输入。\n", "\n", "返回值:转换后的整数值。\n", "\n", "代码用例如下:" ] }, { "cell_type": "code", "execution_count": 1, "id": "3fa24b2b", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: 3\n", "b: 3\n", "c: 18\n", "d: 10\n", "e: 8\n", "f: -1\n" ] } ], "source": [ "import mindspore as ms\n", "\n", "@ms.jit\n", "def func(x):\n", " a = int(3)\n", " b = int(3.6)\n", " c = int('12', 16)\n", " d = int('0xa', 16)\n", " e = int('10', 8)\n", " f = int(x)\n", " return a, b, c, d, e, f\n", "\n", "x = ms.Tensor([-1.0], ms.float32)\n", "a, b, c, d, e, f = func(x)\n", "print(\"a: \", a)\n", "print(\"b: \", b)\n", "print(\"c: \", c)\n", "print(\"d: \", d)\n", "print(\"e: \", e)\n", "print(\"f: \", f)" ] }, { "cell_type": "markdown", "id": "b92e0368", "metadata": {}, "source": [ "## float\n", "\n", "功能:返回一个基于数字或字符串构造的浮点数对象。\n", "\n", "调用:`float(x=0)`。\n", "\n", "入参:`x` - 需要被转换为浮点数的对象,支持类型为`int`、`float`、`bool`、`str`、`Tensor`以及第三方对象(例如`numpy.ndarray`)。\n", "\n", "返回值:转换后的浮点数值。\n", "\n", "代码用例如下:" ] }, { "cell_type": "code", "execution_count": 3, "id": "3f78e866", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: 1.0\n", "b: 112.0\n", "c: -123.5999984741211\n", "d: 123.0\n", "e: -1.0\n" ] } ], "source": [ "import mindspore as ms\n", "\n", "@ms.jit\n", "def func(x):\n", " a = float(1)\n", " b = float(112)\n", " c = float(-123.6)\n", " d = float('123')\n", " e = float(x.asnumpy())\n", " return a, b, c, d, e\n", "\n", "x = ms.Tensor([-1], ms.int32)\n", "a, b, c, d, e = func(x)\n", "print(\"a: \", a)\n", "print(\"b: \", b)\n", "print(\"c: \", c)\n", "print(\"d: \", d)\n", "print(\"e: \", e)" ] }, { "cell_type": "markdown", "id": "b9716de8", "metadata": {}, "source": [ "## bool\n", "\n", "功能:返回一个基于输入构造的布尔值的对象。\n", "\n", "调用:`bool(x=false)`。\n", "\n", "入参:`x` - 需要被转换为布尔值的对象,支持类型为`int`、`float`、`bool`、`str`、`list`、 `tuple`、 `dict`、`Tensor`以及第三方对象(例如`numpy.ndarray`)。\n", "\n", "返回值:转换后的布尔值。\n", "\n", "代码用例如下:" ] }, { "cell_type": "code", "execution_count": 5, "id": "6ee321db", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: False\n", "b: False\n", "c: True\n", "d: True\n", "e: True\n" ] } ], "source": [ "import mindspore as ms\n", "\n", "@ms.jit\n", "def func():\n", " a = bool()\n", " b = bool(0)\n", " c = bool(\"abc\")\n", " d = bool([1, 2, 3, 4])\n", " e = bool(ms.Tensor([10]).asnumpy())\n", " return a, b, c, d, e\n", "\n", "a, b, c, d, e = func()\n", "print(\"a: \", a)\n", "print(\"b: \", b)\n", "print(\"c: \", c)\n", "print(\"d: \", d)\n", "print(\"e: \", e)" ] }, { "cell_type": "markdown", "id": "8a199d01", "metadata": {}, "source": [ "## str\n", "\n", "功能:返回一个基于输入构造的字符串的对象。\n", "\n", "调用:`str(x='')`。\n", "\n", "入参:`x` - 需要被转换为字符串的对象,支持类型为`int`、`float`、`bool`、`str`、`list`、 `tuple`、 `dict`、`Tensor`以及第三方对象(例如`numpy.ndarray`)。\n", "\n", "返回值:输入`x`转换后的字符串。\n", "\n", "代码用例如下,其中a为空字符串:" ] }, { "cell_type": "code", "execution_count": 7, "id": "8187c3ce", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: \n", "b: 0\n", "c: [1, 2, 3, 4]\n", "d: Tensor(shape=[1], dtype=Int64, value=[10])\n", "e: [1 2 3 4]\n" ] } ], "source": [ "import numpy as np\n", "import mindspore as ms\n", "\n", "@ms.jit\n", "def func():\n", " a = str()\n", " b = str(0)\n", " c = str([1, 2, 3, 4])\n", " d = str(ms.Tensor([10]))\n", " e = str(np.array([1, 2, 3, 4]))\n", " return a, b, c, d, e\n", "\n", "a, b, c, d, e = func()\n", "print(\"a: \", a)\n", "print(\"b: \", b)\n", "print(\"c: \", c)\n", "print(\"d: \", d)\n", "print(\"e: \", e)" ] }, { "cell_type": "markdown", "id": "0c2335a3", "metadata": {}, "source": [ "## tuple\n", "\n", "功能:返回一个基于输入构造的元组。\n", "\n", "调用:`tuple(x=())`。\n", "\n", "入参:`x` - 需要被转换为元组的对象,支持类型为`list`、 `tuple`、 `dict`、`Tensor`以及第三方对象(例如`numpy.ndarray`)。\n", "\n", "返回值:按照`x`的第零维度拆分得到的元组。\n", "\n", "代码用例如下:" ] }, { "cell_type": "code", "execution_count": 8, "id": "ba1e7105", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: (1, 2, 3)\n", "b: (1, 2, 3)\n", "c: ('a', 'b', 'c')\n", "d: (Tensor(shape=[], dtype=Int64, value= 1), Tensor(shape=[], dtype=Int64, value= 2), Tensor(shape=[], dtype=Int64, value= 3))\n" ] } ], "source": [ "import numpy as np\n", "import mindspore as ms\n", "\n", "@ms.jit\n", "def func():\n", " a = tuple((1, 2, 3))\n", " b = tuple(np.array([1, 2, 3]))\n", " c = tuple({'a': 1, 'b': 2, 'c': 3})\n", " d = tuple(ms.Tensor([1, 2, 3]))\n", " return a, b, c, d\n", "\n", "a, b, c, d = func()\n", "print(\"a: \", a)\n", "print(\"b: \", b)\n", "print(\"c: \", c)\n", "print(\"d: \", d)" ] }, { "cell_type": "markdown", "id": "6f96be07", "metadata": {}, "source": [ "## list\n", "\n", "功能:返回一个基于输入构造的列表。\n", "\n", "调用:`list(x=())`。\n", "\n", "入参:`x` - 需要被转换为列表的对象,支持类型为`list`、 `tuple`、 `dict`、`Tensor`以及第三方对象(例如`numpy.ndarray`)。\n", "\n", "返回值:按照`x`的第零维度拆分得到的列表。\n", "\n", "代码用例如下:" ] }, { "cell_type": "code", "execution_count": 9, "id": "06e59ed6", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a_t: [1, 2, 3]\n", "b_t: [1, 2, 3]\n", "c_t: ['a', 'b', 'c']\n", "d_t: [Tensor(shape=[], dtype=Int64, value= 1), Tensor(shape=[], dtype=Int64, value= 2), Tensor(shape=[], dtype=Int64, value= 3)]\n" ] } ], "source": [ "import numpy as np\n", "import mindspore as ms\n", "\n", "@ms.jit\n", "def func():\n", " a = list((1, 2, 3))\n", " b = list(np.array([1, 2, 3]))\n", " c = list({'a':1, 'b':2, 'c':3})\n", " d = list(ms.Tensor([1, 2, 3]))\n", " return a, b, c, d\n", "a_t, b_t, c_t, d_t = func()\n", "print(\"a_t: \", a_t)\n", "print(\"b_t: \", b_t)\n", "print(\"c_t: \", c_t)\n", "print(\"d_t: \", d_t)" ] }, { "cell_type": "markdown", "id": "19d432a7", "metadata": {}, "source": [ "## dict\n", "\n", "功能:用于创建一个字典。\n", "\n", "代码用例如下:" ] }, { "cell_type": "code", "execution_count": 10, "id": "ec892089", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: {}\n", "b: {'a': 'a', 'b': 'b', 't': 't'}\n", "c: {'one': 1, 'two': 2, 'three': 3}\n", "d: {'one': 1, 'two': 2, 'three': 3}\n" ] } ], "source": [ "import mindspore as ms\n", "\n", "@ms.jit\n", "def func():\n", " a = dict() # 创建空字典\n", " b = dict(a='a', b='b', t='t') # 传入关键字\n", " c = dict(zip(['one', 'two', 'three'], [1, 2, 3])) # 映射函数方式来构造字典\n", " d = dict([('one', 1), ('two', 2), ('three', 3)]) # 可迭代对象方式来构造字典\n", " return a, b, c, d\n", "\n", "a, b, c, d = func()\n", "print(\"a: \", a)\n", "print(\"b: \", b)\n", "print(\"c: \", c)\n", "print(\"d: \", d)" ] }, { "cell_type": "markdown", "id": "57c502be", "metadata": {}, "source": [ "## getattr\n", "\n", "功能:获取对象的属性。\n", "\n", "调用:`getattr(x, attr, default)`。\n", "\n", "入参:\n", "\n", "- `x` - 需要被获取属性的对象,可以为任意的图模式支持类型;在JIT语法支持级别选项为`Lax`时,也支持第三方库类型。\n", "\n", "- `attr` - 需要获取的属性,需要为`str`。\n", "\n", "- `default` - 可选参数。若`x`没有`attr`,则返回`default`,可以为任意的图模式支持类型;在JIT语法支持级别选项为`Lax`时,也支持第三方库类型。若未输入`default`,且`x`没有属性`attr`,则会抛出AttributeError。\n", "\n", "返回值:目标属性或者`default`。\n", "\n", "代码用例如下:" ] }, { "cell_type": "code", "execution_count": 12, "id": "0c4125ed", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: 0\n", "b: 2\n", "c: (1,)\n" ] } ], "source": [ "import numpy as np\n", "import mindspore as ms\n", "\n", "@ms.jit_class\n", "class MSClass1:\n", " def __init__(self):\n", " self.num0 = 0\n", "\n", "ms_obj = MSClass1()\n", "\n", "@ms.jit\n", "def func(x):\n", " a = getattr(ms_obj, 'num0')\n", " b = getattr(ms_obj, 'num1', 2)\n", " c = getattr(x.asnumpy(), \"shape\", np.array([0, 1, 2, 3, 4]))\n", " return a, b, c\n", "\n", "x = ms.Tensor([-1.0], ms.float32)\n", "a, b, c = func(x)\n", "print(\"a: \", a)\n", "print(\"b: \", b)\n", "print(\"c: \", c)" ] }, { "cell_type": "markdown", "id": "b5d553d6", "metadata": {}, "source": [ "在静态图模式下对象的属性可能会和动态图模式下有区别,建议使用`default`输入,或者在使用`getattr`前先使用`hasattr`进行校验。\n", "\n", "其中`getattr(x.asnumpy(), \"shape\", np.array([0, 1, 2, 3, 4]))`属于高阶用法,更多介绍可见[AST扩展语法(LAX级别)](https://www.mindspore.cn/tutorials/zh-CN/master/compile/static_graph.html#ast%E6%89%A9%E5%B1%95%E8%AF%AD%E6%B3%95lax%E7%BA%A7%E5%88%AB)章节。\n", "\n", "## hasattr\n", "\n", "功能:判断对象是否具有该属性。\n", "\n", "调用:`hasattr(x, attr)`。\n", "\n", "入参:\n", "\n", "- `x` - 需要被判断是否具有某属性的对象,可以为任意的图模式支持类型;在JIT语法支持级别选项为`Lax`时,也支持第三方库类型。\n", "\n", "- `attr` - 属性名,需要为`str`。\n", "\n", "返回值:布尔值,表示是否具有该属性。\n", "\n", "代码用例如下:" ] }, { "cell_type": "code", "execution_count": 14, "id": "8d3da0b3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: True\n", "b: False\n", "c: True\n" ] } ], "source": [ "import numpy as np\n", "import mindspore as ms\n", "from mindspore import Tensor\n", "\n", "@ms.jit_class\n", "class MSClass1:\n", " def __init__(self):\n", " self.num0 = 0\n", "\n", "ms_obj = MSClass1()\n", "\n", "@ms.jit\n", "def func():\n", " a = hasattr(ms_obj, 'num0')\n", " b = hasattr(ms_obj, 'num1')\n", " c = hasattr(Tensor(np.array([1, 2, 3, 4])).asnumpy(), \"__len__\")\n", " return a, b, c\n", "\n", "a, b, c = func()\n", "print(\"a: \", a)\n", "print(\"b: \", b)\n", "print(\"c: \", c)" ] }, { "cell_type": "markdown", "id": "d250cfe9", "metadata": {}, "source": [ "其中`hasattr(Tensor(np.array([1, 2, 3, 4])).asnumpy(), \"__len__\")`属于高阶用法,更多介绍可见[AST扩展语法(LAX级别)](https://www.mindspore.cn/tutorials/zh-CN/master/compile/static_graph.html#ast%E6%89%A9%E5%B1%95%E8%AF%AD%E6%B3%95lax%E7%BA%A7%E5%88%AB)章节。\n", "\n", "## len\n", "\n", "功能:获取对象(字符串或者其他可迭代对象)的长度。\n", "\n", "调用:`len(sequence)`。\n", "\n", "入参:`sequence` - `Tuple`、`List`、`Dictionary`、`Tensor`、`String`以及第三方对象(例如numpy.ndarray)。\n", "\n", "返回值:序列的长度,类型为`int`。当入参是`Tensor`时,返回的是`Tensor`第零维的长度。\n", "\n", "示例如下:" ] }, { "cell_type": "code", "execution_count": 16, "id": "8f0d5275", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x_len:3\n", "y_len:3\n", "d_len:2\n", "z_len:6\n", "n_len:4\n", "w_len:4\n" ] } ], "source": [ "import numpy as np\n", "import mindspore as ms\n", "\n", "z = ms.Tensor(np.ones((6, 4, 5)))\n", "\n", "@ms.jit()\n", "def test(w):\n", " x = (2, 3, 4)\n", " y = [2, 3, 4]\n", " d = {\"a\": 2, \"b\": 3}\n", " n = np.array([1, 2, 3, 4])\n", " x_len = len(x)\n", " y_len = len(y)\n", " d_len = len(d)\n", " z_len = len(z)\n", " n_len = len(n)\n", " w_len = len(w.asnumpy())\n", " return x_len, y_len, d_len, z_len, n_len, w_len\n", "\n", "input_x = ms.Tensor([1, 2, 3, 4])\n", "x_len, y_len, d_len, z_len, n_len, w_len = test(input_x)\n", "print('x_len:{}'.format(x_len))\n", "print('y_len:{}'.format(y_len))\n", "print('d_len:{}'.format(d_len))\n", "print('z_len:{}'.format(z_len))\n", "print('n_len:{}'.format(n_len))\n", "print('w_len:{}'.format(w_len))" ] }, { "cell_type": "markdown", "id": "e7cfebfe", "metadata": {}, "source": [ "其中`len(w.asnumpy())`属于高阶用法,更多介绍可见[AST扩展语法(LAX级别)](https://www.mindspore.cn/tutorials/zh-CN/master/compile/static_graph.html#ast%E6%89%A9%E5%B1%95%E8%AF%AD%E6%B3%95lax%E7%BA%A7%E5%88%AB)章节。\n", "\n", "## isinstance\n", "\n", "功能:判断对象是否为一个已知的类型。\n", "\n", "调用:`isinstance(obj, type)`。\n", "\n", "入参:\n", "\n", "- `obj` - MindSpore支持类型的一个实例。\n", "\n", "- `type` - `bool`、`int`、`float`、`str`、`list`、`tuple`、`dict`、`Tensor`、`Parameter`,或者第三方库的类型(例如numpy.ndarray)或者是一个只包含这些类型的`tuple`。\n", "\n", "返回值:`obj`为`type`的实例,返回`True`,否则返回`False`。\n", "\n", "示例如下:" ] }, { "cell_type": "code", "execution_count": 18, "id": "3c944cde", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x_is_tuple:True\n", "y_is_list:True\n", "z_is_tensor:True\n", "w_is_ndarray:True\n" ] } ], "source": [ "import mindspore as ms\n", "import numpy as np\n", "\n", "z = ms.Tensor(np.ones((6, 4, 5)))\n", "\n", "@ms.jit()\n", "def test(w):\n", " x = (2, 3, 4)\n", " y = [2, 3, 4]\n", " x_is_tuple = isinstance(x, tuple)\n", " y_is_list = isinstance(y, list)\n", " z_is_tensor = isinstance(z, ms.Tensor)\n", " w_is_ndarray = isinstance(w.asnumpy(), np.ndarray)\n", " return x_is_tuple, y_is_list, z_is_tensor, w_is_ndarray\n", "\n", "w = ms.Tensor(np.array([-1, 2, 4]))\n", "x_is_tuple, y_is_list, z_is_tensor, w_is_ndarray = test(w)\n", "print('x_is_tuple:{}'.format(x_is_tuple))\n", "print('y_is_list:{}'.format(y_is_list))\n", "print('z_is_tensor:{}'.format(z_is_tensor))\n", "print('w_is_ndarray:{}'.format(w_is_ndarray))" ] }, { "cell_type": "markdown", "id": "abbdad59", "metadata": {}, "source": [ "其中`isinstance(w.asnumpy(), np.ndarray)`属于高阶用法,更多介绍可见[AST扩展语法(LAX级别)](https://www.mindspore.cn/tutorials/zh-CN/master/compile/static_graph.html#ast%E6%89%A9%E5%B1%95%E8%AF%AD%E6%B3%95lax%E7%BA%A7%E5%88%AB)章节。\n", "\n", "## all\n", "\n", "功能:判断输入中的元素是否均为真值。\n", "\n", "调用:`all(x)`。\n", "\n", "入参:`x` - 可迭代对象,支持类型包括`tuple`、`list`、`dict`、`Tensor`以及第三方对象(例如`numpy.ndarray`)。\n", "\n", "返回值:布尔值,如果所有元素都为`True`,则返回`True`,否则返回`False`。\n", "\n", "代码用例如下:" ] }, { "cell_type": "code", "execution_count": 20, "id": "1bbe918d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: True\n", "b: False\n", "c: False\n", "d: True\n", "e: False\n", "f: False\n", "g: True\n", "h: True\n", "i: False\n" ] } ], "source": [ "import numpy as np\n", "import mindspore as ms\n", "from mindspore import Tensor\n", "\n", "@ms.jit\n", "def func():\n", " a = all(['a', 'b', 'c', 'd'])\n", " b = all(['a', 'b', '', 'd'])\n", " c = all([0, 1, 2, 3])\n", " d = all(('a', 'b', 'c', 'd'))\n", " e = all(('a', 'b', '', 'd'))\n", " f = all((0, 1, 2, 3))\n", " g = all([])\n", " h = all(())\n", " x = Tensor(np.array([0, 1, 2, 3]))\n", " i = all(x.asnumpy())\n", " return a, b, c, d, e, f, g, h, i\n", "\n", "a, b, c, d, e, f, g, h, i = func()\n", "print(\"a: \", a)\n", "print(\"b: \", b)\n", "print(\"c: \", c)\n", "print(\"d: \", d)\n", "print(\"e: \", e)\n", "print(\"f: \", f)\n", "print(\"g: \", g)\n", "print(\"h: \", h)\n", "print(\"i: \", i)" ] }, { "cell_type": "markdown", "id": "c584d3aa", "metadata": {}, "source": [ "其中`all(x.asnumpy())`属于高阶用法,更多介绍可见[AST扩展语法(LAX级别)](https://www.mindspore.cn/tutorials/zh-CN/master/compile/static_graph.html#ast%E6%89%A9%E5%B1%95%E8%AF%AD%E6%B3%95lax%E7%BA%A7%E5%88%AB)章节。\n", "\n", "## any\n", "\n", "功能:判断输入中的元素是存在为真值。\n", "\n", "调用:`any(x)`。\n", "\n", "入参:`x` - 可迭代对象,支持类型包括`tuple`、`list`、`dict`、`Tensor`以及第三方对象(例如`numpy.ndarray`)。\n", "\n", "返回值:布尔值,如果所有元素都为`False`,则返回`False`,否则返回`True`。元素除了0,空,`False`外都算`True`。\n", "\n", "代码用例如下:" ] }, { "cell_type": "code", "execution_count": 22, "id": "a3a1b4c8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: True\n", "b: True\n", "c: False\n", "d: True\n", "e: True\n", "f: False\n", "g: False\n", "h: False\n", "i: True\n" ] } ], "source": [ "import numpy as np\n", "import mindspore as ms\n", "from mindspore import Tensor\n", "\n", "@ms.jit\n", "def func():\n", " a = any(['a', 'b', 'c', 'd'])\n", " b = any(['a', 'b', '', 'd'])\n", " c = any([0, '', False])\n", " d = any(('a', 'b', 'c', 'd'))\n", " e = any(('a', 'b', '', 'd'))\n", " f = any((0, '', False))\n", " g = any([])\n", " h = any(())\n", " x = Tensor(np.array([0, 1, 2, 3]))\n", " i = any(x.asnumpy())\n", " return a, b, c, d, e, f, g, h, i\n", "\n", "a, b, c, d, e, f, g, h, i = func()\n", "print(\"a: \", a)\n", "print(\"b: \", b)\n", "print(\"c: \", c)\n", "print(\"d: \", d)\n", "print(\"e: \", e)\n", "print(\"f: \", f)\n", "print(\"g: \", g)\n", "print(\"h: \", h)\n", "print(\"i: \", i)" ] }, { "cell_type": "markdown", "id": "402d0772", "metadata": {}, "source": [ "## round\n", "\n", "功能:返回输入的四舍五入。\n", "\n", "调用:`round(x, digit=0)`。\n", "\n", "入参:\n", "\n", "- `x` - 需要四舍五入的值,有效类型为 `int`、`float`、`bool`、`Tensor`以及定义了魔术方法`__round__()`第三方对象。\n", "\n", "- `digit` - 表示进行四舍五入的小数点位数,默认值为0,支持`int`类型以及`None`。若`x`为`Tensor`类型,则不支持输入`digit`。\n", "\n", "返回值:四舍五入后的值。\n", "\n", "代码用例如下:" ] }, { "cell_type": "code", "execution_count": 24, "id": "ca60a86a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: 10\n", "b: 10\n", "c: 11\n", "d: 10\n", "e: 10.00\n", "f: 20.00\n", "g: 10.20\n", "h: 10.10\n" ] } ], "source": [ "import mindspore as ms\n", "\n", "@ms.jit\n", "def func():\n", " a = round(10)\n", " b = round(10.123)\n", " c = round(10.567)\n", " d = round(10, 0)\n", " e = round(10.72, -1)\n", " f = round(17.12, -1)\n", " g = round(10.17, 1)\n", " h = round(10.12, 1)\n", " return a, b, c, d, e, f, g, h\n", "\n", "a, b, c, d, e, f, g, h = func()\n", "print(\"a: \", a)\n", "print(\"b: \", b)\n", "print(\"c: \", c)\n", "print(\"d: \", d)\n", "print(\"e: {:.2f}\".format(e))\n", "print(\"f: {:.2f}\".format(f))\n", "print(\"g: {:.2f}\".format(g))\n", "print(\"h: {:.2f}\".format(h))" ] }, { "cell_type": "markdown", "id": "353ecfc8", "metadata": {}, "source": [ "## max\n", "\n", "功能:返回给定参数的最大值。\n", "\n", "调用:`max(*data)`。\n", "\n", "入参: - `*data` - 若`*data`为单输入,则会比较单个输入内的各个元素,此时`data`必须为可迭代对象。若存在多个输入,则比较每个输入。`data`有效类型为`int`、`float`、`bool`、`list`、`tuple`、`dict`、`Tensor`以及第三方对象(例如`numpy.ndarray`)。\n", "\n", "返回值:最大值。\n", "\n", "代码用例如下:" ] }, { "cell_type": "code", "execution_count": 26, "id": "b3eab550", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: 3\n", "b: 3\n", "c: 3\n", "d: 4\n", "e: c\n", "f: (1, 4)\n", "g: 3\n" ] } ], "source": [ "import numpy as np\n", "import mindspore as ms\n", "\n", "@ms.jit\n", "def func():\n", " a = max([0, 1, 2, 3])\n", " b = max((0, 1, 2, 3))\n", " c = max({1: 10, 2: 20, 3: 3})\n", " d = max(np.array([1, 2, 3, 4]))\n", " e = max(('a', 'b', 'c'))\n", " f = max((1, 2, 3), (1, 4))\n", " g = max(ms.Tensor([1, 2, 3]))\n", " return a, b, c, ms.Tensor(d), e, f, g\n", "\n", "a, b, c, d, e, f, g = func()\n", "print(\"a: \", a)\n", "print(\"b: \", b)\n", "print(\"c: \", c)\n", "print(\"d: \", d)\n", "print(\"e: \", e)\n", "print(\"f: \", f)\n", "print(\"g: \", g)" ] }, { "cell_type": "markdown", "id": "6637483d", "metadata": {}, "source": [ "## min\n", "\n", "功能:返回给定参数的最小值。\n", "\n", "调用:`min(*data)`。\n", "\n", "入参: - `*data` - 若`*data`为单输入,则会比较单个输入内的各个元素,此时`data`必须为可迭代对象。若存在多个输入,则比较每个输入。`data`有效类型为`int`、`float`、`bool`、`list`、`tuple`、`dict`、`Tensor`以及第三方对象(例如`numpy.ndarray`)。\n", "\n", "返回值:最小值。\n", "\n", "代码用例如下:" ] }, { "cell_type": "code", "execution_count": 28, "id": "fee90d88", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: 0\n", "b: 0\n", "c: 1\n", "d: 1\n", "e: a\n", "f: (1, 2, 3)\n", "g: 1\n" ] } ], "source": [ "import numpy as np\n", "import mindspore as ms\n", "\n", "@ms.jit\n", "def func():\n", " a = min([0, 1, 2, 3])\n", " b = min((0, 1, 2, 3))\n", " c = min({1: 10, 2: 20, 3: 3})\n", " d = min(np.array([1, 2, 3, 4]))\n", " e = min(('a', 'b', 'c'))\n", " f = min((1, 2, 3), (1, 4))\n", " g = min(ms.Tensor([1, 2, 3]))\n", " return a, b, c, ms.Tensor(d), e, f, g\n", "\n", "a, b, c, d, e, f, g = func()\n", "print(\"a: \", a)\n", "print(\"b: \", b)\n", "print(\"c: \", c)\n", "print(\"d: \", d)\n", "print(\"e: \", e)\n", "print(\"f: \", f)\n", "print(\"g: \", g)" ] }, { "cell_type": "markdown", "id": "72ab9a6f", "metadata": {}, "source": [ "## sum\n", "\n", "功能:对输入序列进行求和计算。\n", "\n", "调用:`sum(x, n=0)`。\n", "\n", "入参:\n", "\n", "- `x` - 表示可迭代对象,有效类型为`list`、`tuple`、`Tensor`以及第三方对象(例如`numpy.ndarray`)。\n", "\n", "- `n` - 表示指定相加的参数,缺省值为0。\n", "\n", "返回值:对`x`求和后与`n`相加得到的值。\n", "\n", "代码用例如下:" ] }, { "cell_type": "code", "execution_count": 30, "id": "c9da1f39", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: 3\n", "b: 13\n", "c: 6\n", "d: 16\n", "e: [4 6]\n", "f: [[ 4 6]\n", " [ 8 10]]\n" ] } ], "source": [ "import numpy as np\n", "import mindspore as ms\n", "\n", "@ms.jit\n", "def func():\n", " a = sum([0, 1, 2])\n", " b = sum((0, 1, 2), 10)\n", " c = sum(np.array([1, 2, 3]))\n", " d = sum(ms.Tensor([1, 2, 3]), 10)\n", " e = sum(ms.Tensor([[1, 2], [3, 4]]))\n", " f = sum([1, ms.Tensor([[1, 2], [3, 4]]), ms.Tensor([[1, 2], [3, 4]])], ms.Tensor([[1, 1], [1, 1]]))\n", " return a, b, ms.Tensor(c), d, e, f\n", "\n", "a, b, c, d, e, f = func()\n", "print(\"a: \", a)\n", "print(\"b: \", b)\n", "print(\"c: \", c)\n", "print(\"d: \", d)\n", "print(\"e: \", e)\n", "print(\"f: \", f)" ] }, { "cell_type": "markdown", "id": "db37cefe", "metadata": {}, "source": [ "## abs\n", "\n", "功能:返回给定参数的绝对值。\n", "\n", "调用:`abs(x)`。\n", "\n", "入参: - `x` - 有效类型为`int`、`float`、`bool`、`Tensor`以及第三方对象(例如`numpy.ndarray`)。\n", "\n", "返回值:绝对值。\n", "\n", "代码用例如下:" ] }, { "cell_type": "code", "execution_count": 31, "id": "0f48f11e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: 45\n", "b: 100.12\n", "c: [1 2]\n" ] } ], "source": [ "import mindspore as ms\n", "from mindspore import Tensor\n", "\n", "@ms.jit\n", "def func():\n", " a = abs(-45)\n", " b = abs(100.12)\n", " c = abs(Tensor([-1, 2]).asnumpy())\n", " return a, b, c\n", "\n", "a, b, c = func()\n", "print(\"a: \", a)\n", "print(\"b: {:.2f}\".format(b))\n", "print(\"c: \", c)" ] }, { "cell_type": "markdown", "id": "bd2880eb", "metadata": {}, "source": [ "其中`abs(Tensor([-1, 2]).asnumpy())`属于高阶用法,更多介绍可见[AST扩展语法(LAX级别)](https://www.mindspore.cn/tutorials/zh-CN/master/compile/static_graph.html#ast%E6%89%A9%E5%B1%95%E8%AF%AD%E6%B3%95lax%E7%BA%A7%E5%88%AB)章节。\n", "\n", "## map\n", "\n", "功能:根据提供的函数对一个或者多个序列做映射,由映射的结果生成一个新的序列。当前要求多个序列中的元素个数一致。\n", "\n", "调用:`map(func, sequence, ...)`。\n", "\n", "入参:\n", "\n", "- `func` - 函数。\n", "\n", "- `sequence` - 一个或多个序列(`Tuple`或者`List`)。\n", "\n", "返回值:返回一个新的序列。\n", "\n", "示例如下:" ] }, { "cell_type": "code", "execution_count": 32, "id": "859aad65", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ret1:(5, 7, 9)\n", "ret2:[6, 8, 10]\n" ] } ], "source": [ "import mindspore as ms\n", "\n", "def add(x, y):\n", " return x + y\n", "\n", "@ms.jit()\n", "def test():\n", " elements_a = (1, 2, 3)\n", " elements_b = (4, 5, 6)\n", " ret1 = map(add, elements_a, elements_b)\n", " elements_c = [0, 1, 2]\n", " elements_d = [6, 7, 8]\n", " ret2 = map(add, elements_c, elements_d)\n", " return ret1, ret2\n", "\n", "ret1, ret2 = test()\n", "print('ret1:{}'.format(ret1))\n", "print('ret2:{}'.format(ret2))" ] }, { "cell_type": "markdown", "id": "794e3ce3", "metadata": {}, "source": [ "## zip\n", "\n", "功能:将多个序列中对应位置的元素打包成一个个元组,然后由这些元组组成一个新序列,如果各个序列中的元素个数不一致,则生成的新序列与最短的那个长度相同。\n", "\n", "调用:`zip(sequence, ...)`。\n", "\n", "入参:`sequence` - 一个或多个序列(`Tuple`或`List`)。\n", "\n", "返回值:返回一个新的序列。\n", "\n", "示例如下:" ] }, { "cell_type": "code", "execution_count": 33, "id": "14ebda94", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ret:((1, 4), (2, 5), (3, 6))\n" ] } ], "source": [ "import mindspore as ms\n", "\n", "@ms.jit()\n", "def test():\n", " elements_a = (1, 2, 3)\n", " elements_b = (4, 5, 6, 7)\n", " ret = zip(elements_a, elements_b)\n", " return ret\n", "\n", "ret = test()\n", "print('ret:{}'.format(ret))" ] }, { "cell_type": "markdown", "id": "decd8132", "metadata": {}, "source": [ "## range\n", "\n", "功能:根据起始值、结束值和步长创建一个`Tuple`。\n", "\n", "调用:\n", "\n", "- `range(start, stop, step)`\n", "\n", "- `range(start, stop)`\n", "\n", "- `range(stop)`\n", "\n", "入参:\n", "\n", "- `start` - 计数起始值,类型为`int`,默认为0。\n", "\n", "- `stop` - 计数结束值,但不包括在内,类型为`int`。\n", "\n", "- `step` - 步长,类型为`int`,默认为1。\n", "\n", "返回值:返回一个`Tuple`。\n", "\n", "示例如下:" ] }, { "cell_type": "code", "execution_count": 34, "id": "a1fbd498", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x:(0, 2, 4)\n", "y:(0, 1, 2, 3, 4)\n", "z:(0, 1, 2)\n" ] } ], "source": [ "import mindspore as ms\n", "\n", "@ms.jit()\n", "def test():\n", " x = range(0, 6, 2)\n", " y = range(0, 5)\n", " z = range(3)\n", " return x, y, z\n", "\n", "x, y, z = test()\n", "print('x:{}'.format(x))\n", "print('y:{}'.format(y))\n", "print('z:{}'.format(z))" ] }, { "cell_type": "markdown", "id": "9c6a11b7", "metadata": {}, "source": [ "## enumerate\n", "\n", "功能:生成一个序列的索引序列,索引序列包含数据和对应下标。\n", "\n", "调用:\n", "\n", "- `enumerate(sequence, start=0)`\n", "\n", "- `enumerate(sequence)`\n", "\n", "入参:\n", "\n", "- `sequence` - 一个序列(`Tuple`、`List`、`Tensor`)。\n", "\n", "- `start` - 下标起始位置,类型为`int`,默认为0。\n", "\n", "返回值:返回一个`Tuple`。\n", "\n", "示例如下:" ] }, { "cell_type": "code", "execution_count": 35, "id": "5265694c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "m:((3, 100), (4, 200), (5, 300), (6, 400))\n", "n:((0, Tensor(shape=[2], dtype=Int64, value= [1, 2])), (1, Tensor(shape=[2], dtype=Int64, value= [3, 4])), (2, Tensor(shape=[2], dtype=Int64, value= [5, 6])))\n" ] } ], "source": [ "import mindspore as ms\n", "import numpy as np\n", "\n", "y = ms.Tensor(np.array([[1, 2], [3, 4], [5, 6]]))\n", "\n", "@ms.jit()\n", "def test():\n", " x = (100, 200, 300, 400)\n", " m = enumerate(x, 3)\n", " n = enumerate(y)\n", " return m, n\n", "\n", "m, n = test()\n", "print('m:{}'.format(m))\n", "print('n:{}'.format(n))" ] }, { "cell_type": "markdown", "id": "90769137", "metadata": {}, "source": [ "## super\n", "\n", "功能:用于调用父类(超类)的一个方法,一般在`super`之后调用父类的方法。\n", "\n", "调用:\n", "\n", "- `super().xxx()`\n", "\n", "- `super(type, self).xxx()`\n", "\n", "入参:\n", "\n", "- `type` - 类。\n", "\n", "- `self` - 对象。\n", "\n", "返回值:返回父类的方法。\n", "\n", "示例如下:" ] }, { "cell_type": "code", "execution_count": 36, "id": "2755bcdb", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "out: (9, 6)\n" ] } ], "source": [ "import mindspore as ms\n", "from mindspore import nn, set_context\n", "\n", "set_context(mode=ms.GRAPH_MODE)\n", "\n", "class FatherNet(nn.Cell):\n", " def __init__(self, x):\n", " super(FatherNet, self).__init__(x)\n", " self.x = x\n", "\n", " def construct(self, x, y):\n", " return self.x * x\n", "\n", " def test_father(self, x):\n", " return self.x + x\n", "\n", "class SingleSubNet(FatherNet):\n", " def __init__(self, x, z):\n", " super(SingleSubNet, self).__init__(x)\n", " self.z = z\n", "\n", " def construct(self, x, y):\n", " ret_father_construct = super().construct(x, y)\n", " ret_father_test = super(SingleSubNet, self).test_father(x)\n", " return ret_father_construct, ret_father_test\n", "\n", "x = 3\n", "y = 6\n", "z = 9\n", "f_net = FatherNet(x)\n", "net = SingleSubNet(x, z)\n", "out = net(x, y)\n", "print(\"out:\", out)" ] }, { "cell_type": "markdown", "id": "8ab9ad24", "metadata": {}, "source": [ "## pow\n", "\n", "功能:求幂。\n", "\n", "调用:`pow(x, y)`\n", "\n", "入参:\n", "\n", "- `x` - 底数, `Number`或`Tensor`。\n", "\n", "- `y` - 幂指数, `Number`或`Tensor`。\n", "\n", "返回值:返回`x`的`y`次幂,`Number`或`Tensor`。\n", "\n", "示例如下:" ] }, { "cell_type": "code", "execution_count": 37, "id": "3d67dadf", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ret:[ 1 4 27]\n" ] } ], "source": [ "import mindspore as ms\n", "import numpy as np\n", "\n", "x = ms.Tensor(np.array([1, 2, 3]))\n", "y = ms.Tensor(np.array([1, 2, 3]))\n", "\n", "@ms.jit()\n", "def test(x, y):\n", " return pow(x, y)\n", "\n", "ret = test(x, y)\n", "\n", "print('ret:{}'.format(ret))" ] }, { "cell_type": "markdown", "id": "a254dbad", "metadata": {}, "source": [ "## print\n", "\n", "功能:用于打印。\n", "\n", "调用:`print(arg, ...)`\n", "\n", "入参:`arg` - 要打印的信息(`int` 、`float`、`bool`、`String`或`Tensor`,或者第三方库的数据类型)。\n", "\n", "返回值:无返回值。\n", "\n", "示例如下:" ] }, { "cell_type": "code", "execution_count": 38, "id": "9a834f00", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor(shape=[3], dtype=Int32, value=[1 2 3])\n", "Tensor(shape=[], dtype=Int32, value=3)\n" ] } ], "source": [ "import mindspore as ms\n", "import numpy as np\n", "\n", "x = ms.Tensor(np.array([1, 2, 3]), ms.int32)\n", "y = ms.Tensor(3, ms.int32)\n", "\n", "@ms.jit()\n", "def test(x, y):\n", " print(x)\n", " print(y)\n", " return x, y\n", "\n", "ret = test(x, y)" ] }, { "cell_type": "markdown", "id": "386bddd5", "metadata": {}, "source": [ "## filter\n", "\n", "功能:根据提供的函数对一个序列的元素做判断,每个元素依次作为参数传入函数中,将返回结果不为0或False的元素组成新的序列。\n", "\n", "调用:`filter(func, sequence)`\n", "\n", "入参:\n", "\n", "- `func` - 函数。\n", "\n", "- `sequence` - 序列(`Tuple`或`List`)。\n", "\n", "返回值:返回一个新的序列。\n", "\n", "示例如下:" ] }, { "cell_type": "code", "execution_count": 39, "id": "6f5dbb25", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ret1:[1, 3, 5]\n", "ret2:[7, 9]\n" ] } ], "source": [ "import mindspore as ms\n", "\n", "def is_odd(x):\n", " if x % 2:\n", " return True\n", " return False\n", "\n", "@ms.jit()\n", "def test():\n", " elements1 = (1, 2, 3, 4, 5)\n", " ret1 = filter(is_odd, elements1)\n", " elements2 = [6, 7, 8, 9, 10]\n", " ret2 = filter(is_odd, elements2)\n", " return ret1, ret2\n", "\n", "ret1, ret2 = test()\n", "print('ret1:{}'.format(ret1))\n", "print('ret2:{}'.format(ret2))" ] }, { "cell_type": "markdown", "id": "970d3f03", "metadata": {}, "source": [ "## type\n", "\n", "功能:输出入参的类型。\n", "\n", "有效输入:Number、list、tuple、dict、numpy.ndarray、常量Tensor。\n", "\n", "代码用例如下:" ] }, { "cell_type": "code", "execution_count": 40, "id": "96795481", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a: <class 'int'>\n", "b: <class 'float'>\n", "c: <class 'list'>\n", "d: <class 'tuple'>\n", "e: <class 'dict'>\n", "f: <class 'numpy.ndarray'>\n", "g: <class 'mindspore.common.tensor.Tensor'>\n" ] } ], "source": [ "import numpy as np\n", "import mindspore as ms\n", "\n", "@ms.jit\n", "def func():\n", " a = type(1)\n", " b = type(1.0)\n", " c = type([1, 2, 3])\n", " d = type((1, 2, 3))\n", " e = type({'a': 1, 'b': 2})\n", " f = type(np.array([1, 2, 3]))\n", " g = type(ms.Tensor([1, 2, 3]))\n", " return a, b, c, d, e, f, g\n", "\n", "a, b, c, d, e, f, g = func()\n", "print(\"a: \", a)\n", "print(\"b: \", b)\n", "print(\"c: \", c)\n", "print(\"d: \", d)\n", "print(\"e: \", e)\n", "print(\"f: \", f)\n", "print(\"g: \", g)" ] }, { "cell_type": "markdown", "id": "b291b56d", "metadata": {}, "source": [ "> type作为Python的原生函数还有另外一种使用方法,即type(name, bases, dict)返回name类型的类对象,由于该用法应用场景较少,因此暂不支持。" ] } ], "metadata": { "kernelspec": { "display_name": "MindSpore", "language": "python", "name": "mindspore" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.10" } }, "nbformat": 4, "nbformat_minor": 5 }