Dump功能调试
概述
为了对训练过程进行分析,用户需要感知训练过程中算子的输入和输出数据。
对于静态图模式,MindSpore提供了Dump功能,用来将模型训练中的图以及算子的输入输出数据保存到磁盘文件。
对于动态图模式,Dump功能仅支持Ascend后端的溢出检测能力。要想查看非溢出节点,可以使用Python原生执行能力,用户可以在网络脚本运行过程中查看记录相应的输入输出。
调试过程
使用Dump来帮助调试分为两个步骤:1、数据准备;2、数据分析。
数据准备
数据准备阶段使用同步Dump或异步Dump来生成Dump数据。使用方法详见同步Dump操作步骤和异步Dump操作步骤。
在准备数据时,您可以参考以下最佳实践:
设置
iteration
参数,仅保存出现问题的迭代和前一个迭代这两个迭代的数据。例如,要分析的问题会在第10个迭代(从1开始数)出现,则可以这样设置:"iteration": "8|9"
。请注意iteration
参数从0开始计算迭代数。保存上述两个迭代的数据能够支撑大多数场景的问题分析。在出现问题的迭代执行完毕后,建议您通过run_context.request_stop()等方法提前结束训练。
数据分析
如果用户已经安装了MindSpore Insight, 可以使用MindSpore Insight的离线调试器来分析。离线调试器的使用方法详见使用离线调试器 。
如果没有安装MindSpore Insight,需要通过以下步骤来分析数据。
从脚本找到对应的算子
使用Dump功能将自动生成最终执行图的IR文件(IR文件中包含了算子全名,和算子在计算图中输入和输出的依赖,也包含从算子到相应脚本代码的Trace信息),IR文件可以用
vi
命令查看,Dump功能的配置见同步Dump操作步骤和异步Dump操作步骤,Dump输出的目录结构见同步Dump数据对象目录和异步Dump数据对象目录。然后通过图文件找到脚本中代码对应的算子,参考同步Dump数据分析样例和异步Dump数据分析样例。从算子到Dump数据
在了解脚本和算子的映射关系后,可以确定想要分析的算子名称,从而找到算子对应的dump文件,参考同步Dump数据对象目录和异步Dump数据对象目录。
分析Dump数据
通过解析Dump数据,可以与其他第三方框架进行对比。同步Dump数据格式参考同步Dump数据文件介绍,异步Dump数据格式参考异步Dump数据文件介绍。
适用场景
静态图算子结果分析。
通过Dump功能获得的IR图,可以了解脚本代码与执行算子的映射关系(详情见MindSpore IR简介)。结合执行算子的输入和输出数据,可以分析训练过程中可能存在的溢出、梯度爆炸与消失等问题,反向跟踪到脚本中可能存在问题的代码。
特征图分析。
通过获取图层的输出数据,分析特征图的信息。
模型迁移。
在将模型从第三方框架(TensorFlow、PyTorch)迁移到MindSpore的场景中,通过比对相同位置算子的输出数据,分析第三方框架和MindSpore对于同一模型的训练结果是否足够接近,来定位模型的精度问题。
Dump功能说明
MindSpore提供了同步Dump与异步Dump两种模式:
同步Dump的机制是在网络训练过程中每个step执行结束后, Host侧发起Dump动作,从Device上拷贝算子地址里面的数据到Host,并保存文件。同步Dump会默认关闭算子间的内存复用,避免读到脏数据。
异步Dump是专门针对Ascend整图下沉而开发的功能,可以一边执行算子一边dump数据,一个算子执行结束后立即dump数据,因此开启内存复用也可以生成正确的数据,但是相应的网络训练的速度会较慢。
不同模式所需要的配置文件和dump出来的数据格式不同:
在Ascend上开启同步Dump的时候,待Dump的算子会自动关闭内存复用。
异步Dump全量功能只支持Ascend上的图模式,异步Dump溢出检测功能只支持Ascend上的图模式和PyNative模式。开启异步Dump的时候不会关闭内存复用。
默认使用用异步Dump模式,如果要使用同步Dump模式,需要在配置文件中设置”e2e_dump_settings”。
Dump暂不支持异构训练,如果在异构训练场景启用Dump,生成的Dump数据对象目录可能不符合预期的目录结构。
同步Dump
同步Dump操作步骤
创建json格式的配置文件,JSON文件的名称和位置可以自定义设置。
{ "common_dump_settings": { "dump_mode": 0, "path": "/absolute_path", "net_name": "ResNet50", "iteration": "0|5-8|100-120", "saved_data": "tensor", "input_output": 0, "kernels": ["Default/Conv-op12"], "support_device": [0,1,2,3,4,5,6,7] }, "e2e_dump_settings": { "enable": true, "trans_flag": true } }
dump_mode
:设置成0,表示Dump出该网络中的所有算子数据;设置成1,表示Dump"kernels"
里面指定的算子数据或算子类型数据。path
:Dump保存数据的绝对路径。net_name
:自定义的网络名称,例如:”ResNet50”。iteration
:指定需要Dump数据的迭代。类型为str,用“|”分离要保存的不同区间的step的数据。如”0|5-8|100-120”表示Dump第1个,第6个到第9个, 第101个到第121个step的数据。指定“all”,表示Dump所有迭代的数据。saved_data
: 指定Dump的数据。类型为str,取值成”tensor”,表示Dump出完整张量数据;取值成”statistic”,表示只Dump张量的统计信息;取值”full”代表两种都要。同步Dump统计信息现只支持GPU场景,CPU或Ascend场景若选”statistic”或”full”便会错误退出。默认取值为”tensor”。input_output
:设置成0,表示Dump出算子的输入和算子的输出;设置成1,表示Dump出算子的输入;设置成2,表示Dump出算子的输出。kernels
:该项可以配置两种格式:算子的名称列表。开启IR保存开关
set_context(save_graphs=2)
并执行用例,从生成的IR文件trace_code_graph_{graph_id}
中获取算子名称。详细说明可以参照教程:如何保存IR。 需要注意的是,是否设置set_context(save_graphs=2)
可能会导致同一个算子的id不同,所以在Dump指定算子时要在获取算子名称之后保持这一项设置不变。或者也可以在Dump保存的ms_output_trace_code_graph_{graph_id}.ir
文件中获取算子名称,参考同步Dump数据对象目录。还可以指定算子类型。当字符串中不带算子scope信息和算子id信息时,后台则认为其为算子类型,例如:”conv”。算子类型的匹配规则为:当发现算子名中包含算子类型字符串时,则认为匹配成功(不区分大小写),例如:”conv” 可以匹配算子 “Conv2D-op1234”、”Conv3D-op1221”。
support_device
:支持的设备,默认设置成0到7即可;在分布式训练场景下,需要dump个别设备上的数据,可以只在support_device
中指定需要Dump的设备Id。该配置参数在CPU上无效,因为CPU下没有device这个概念,但是在json格式的配置文件中仍需保留该字段。enable
:设置成true,表示开启同步Dump;设置成false时,在Ascend上会使用异步Dump,在GPU上仍然使用同步Dump。trans_flag
:开启格式转换。将设备上的数据格式转换成NCHW格式。若为True
,则数据会以Host侧的4D格式(NCHW)格式保存;若为False
,则保留Device侧的数据格式。该配置参数在CPU上无效,因为CPU上没有format转换,但是在json格式的配置文件中仍需保留该字段。
设置Dump环境变量。
指定Dump的json配置文件。
export MINDSPORE_DUMP_CONFIG=${xxx}
其中”xxx”为配置文件的绝对路径,如:
export MINDSPORE_DUMP_CONFIG=/path/to/data_dump.json
如果Dump配置文件没有设置
path
字段或者设置为空字符串,还需要配置环境变量MS_DIAGNOSTIC_DATA_PATH
。export MS_DIAGNOSTIC_DATA_PATH=${yyy}
则“$MS_DIAGNOSTIC_DATA_PATH/debug_dump”就会被当做
path
的值。若Dump配置文件中设置了path
字段,则仍以该字段的实际取值为准。注意:
在网络脚本执行前,设置好环境变量;网络脚本执行过程中设置将会不生效。
在分布式场景下,Dump环境变量需要在调用
mindspore.communication.init
之前配置。
启动网络训练脚本。
训练启动后,若正确配置了
MINDSPORE_DUMP_CONFIG
环境变量,则会读取配置文件的内容,并按照Dump配置中指定的数据保存路径保存算子数据。 同步模式下,GPU环境如果要Dump数据,必须采用非数据下沉模式(设置model.train
或DatasetHelper
中的dataset_sink_mode
参数为False
),以保证可以获取每个step的Dump数据。 若脚本中都不调用model.train
或DatasetHelper
,则默认为非数据下沉模式。使用Dump功能将自动生成最终执行图的IR文件。可以在训练脚本中设置
set_context(reserve_class_name_in_scope=False)
,避免Dump文件名称过长导致Dump数据文件生成失败。通过
numpy.load
读取和解析同步Dump数据,参考同步Dump数据文件介绍。
同步Dump数据对象目录
启动训练后,同步Dump保存的数据对象包括最终执行图(ms_output_trace_code_graph_{graph_id}.ir
文件)以及图中算子的输入和输出数据,数据目录结构如下所示:
{path}/
- rank_{rank_id}/
- .dump_metadata/
- {net_name}/
- {graph_id}/
- {iteration_id}/
statistic.csv
{op_type}.{op_name}.{task_id}.{stream_id}.{timestamp}.{input_output_index}.{slot}.{format}.npy
- constants/
Parameter.data-{data_id}.0.0.{timestamp}.output.0.DefaultFormat.npy
...
- graphs/
ms_output_trace_code_graph_{graph_id}.pb
ms_output_trace_code_graph_{graph_id}.ir
- execution_order/
ms_execution_order_graph_{graph_id}.csv
ms_global_execution_order_graph_{graph_id}.csv
path
:data_dump.json
配置文件中设置的绝对路径。rank_id
: 逻辑卡号。net_name
:data_dump.json
配置文件中设置的网络名称。graph_id
:训练的图标号。iteration_id
:训练的轮次。op_type
:算子类型。op_name
:算子名称。task_id
:任务标号。stream_id
:流标号。timestamp
:时间戳。input_output_index
:输入或输出标号,例如output.0
表示该文件是该算子的第1个输出Tensor的数据。slot
:slot标号。format
: 数据格式。data_id
: 常量数据标号。
对于多图网络,由于存在控制流,某些子图可能不会被执行,Dump只保存执行过的节点,所以graphs目录下.pb
文件名中的{graph_id}并不一定在{net_name}下存在对应的{graph_id}目录。
只当saved_data
为”statistic”或者”full”时,才会生成statistic.csv
,当saved_data
为”tensor”或者”full”时,才会生成{op_type}.{op_name}.{task_id}.{stream_id}.{timestamp}.{input_output_index}.{slot}.{format}.npy
命名的完整张量信息。
同步Dump数据文件介绍
同步Dump生成的数据文件是后缀名为.npy
的文件,文件命名格式为:
{op_type}.{op_name}.{task_id}.{stream_id}.{timestamp}.{input_output_index}.{slot}.{format}.npy
同步Dump生成的常量数据文件与其他数据文件格式相同,而所有常量数据的{op_type},{task_id},{stream_id},{input_output_index},{slot},{format}不变。注意,非Tensor类型数据不会被生成数据文件。
Parameter.data-{data_id}.0.0.{timestamp}.output.0.DefaultFormat.npy
可以用Numpy的numpy.load
接口读取数据。
同步Dump生成的统计数据文件名为statistic.csv
,此文件存有相同目录下所有落盘张量(文件名为{op_type}.{op_name}.{task_id}.{stream_id}.{timestamp}.{input_output_index}.{slot}.{format}.npy
)的统计信息。每个张量一行,每行有张量的 Op Type,Op Name,Task ID,Stream ID,Timestamp,IO,Slot,Data Size,Data Type,Shape,Max Value,Min Value,Avg Value,Count,Negative Zero Count,Positive Zero Count,NaN Count,Negative Inf Count,Positive Inf Count,Zero Count。注意,如果用Excel来打开此文件,数据可能无法正确显示。请用vi
、cat
等命令查看,或者使用Excel自文本导入csv查看。
同步Dump生成的最终执行图文件后缀名分别为.pb
和.ir
,文件命名格式为:
ms_output_trace_code_graph_{graph_id}.pb
ms_output_trace_code_graph_{graph_id}.ir
其中以.ir
为后缀的文件可以通过vi
命令打开查看。
同步Dump生成的节点执行序文件后缀名为.csv
,文件命名格式为:
ms_execution_order_graph_{graph_id}.csv
图执行历史文件的后缀为.csv
,文件名格式为:
ms_global_execution_order_graph_{graph_id}.csv
此文件记录该图在训练过程中的执行轮次历史。图编译过程中,一张根图可能产生多张子图,但子图与根图具有相同的执行轮次历史。故与图执行序文件不同,此处仅保存根图的图执行历史文件。
.dump_metadata
记录了训练的原信息,其中data_dump.json
保存了用户设置的dump配置。
同步Dump数据分析样例
为了更好地展示使用Dump来保存数据并分析数据的流程,我们提供了一套完整样例脚本 ,同步Dump只需要执行 bash run_sync_dump.sh
。
在通过Dump功能将脚本对应的图保存到磁盘上后,会产生最终执行图文件ms_output_trace_code_graph_{graph_id}.ir
。该文件中保存了对应的图中每个算子的堆栈信息,记录了算子对应的生成脚本。
以AlexNet脚本为例 :
...
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0, pad_mode="valid"):
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode=pad_mode)
def fc_with_initialize(input_channels, out_channels):
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable():
return TruncatedNormal(0.02)
class AlexNet(nn.Cell):
"""
Alexnet
"""
def __init__(self, num_classes=10, channel=3):
super(AlexNet, self).__init__()
self.conv1 = conv(channel, 96, 11, stride=4)
self.conv2 = conv(96, 256, 5, pad_mode="same")
self.conv3 = conv(256, 384, 3, pad_mode="same")
self.conv4 = conv(384, 384, 3, pad_mode="same")
self.conv5 = conv(384, 256, 3, pad_mode="same")
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2)
self.flatten = nn.Flatten()
self.fc1 = fc_with_initialize(6 * 6 * 256, 4096)
self.fc2 = fc_with_initialize(4096, 4096)
self.fc3 = fc_with_initialize(4096, num_classes)
def construct(self, x):
"""
The construct function.
Args:
x(int): Input of the network.
Returns:
Tensor, the output of the network.
"""
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv3(x)
x = self.relu(x)
x = self.conv4(x)
x = self.relu(x)
x = self.conv5(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x
...
如果用户想查看脚本中第175行的代码:
x = self.conv3(x)
执行完训练网络后,可以从最终执行图(ms_output_trace_code_graph_{graph_id}.ir
文件)中查找到该行代码所对应的多个算子信息,例如Conv2D-op12对应的文件内容如下所示:
%20(equivoutput) = Conv2D(%17, %19) {instance name: conv2d} primitive_attrs: {IsFeatureMapInputList: (0), kernel_size: (3, 3), mode: 1, out_channel: 384, input_names: [
x, w], pri_format: NC1HWC0, pad: (0, 0, 0, 0), visited: true, pad_mod: same, format: NCHW, pad_list: (1, 1, 1, 1), precision_flag: reduce, groups: 1, output_used_num:
(1), stream_id: 0, stride: (1, 1, 1, 1), group: 1, dilation: (1, 1, 1, 1), output_names: [output], IsFeatureMapOutput: true, ms_function_graph: true}
: (<Tensor[Float32], (32, 256, 13, 13)>, <Tensor[Float32], (384, 256, 3, 3)>) -> (<Tensor[Float32], (32, 384, 13, 13)>)
: (<Float16xNC1HWC0[const vector][32, 16, 13, 13, 16]>, <Float16xFracZ[const vector][144, 24, 16, 16]>) -> (<Float32xNC1HWC0[const vector][32, 24, 13, 13, 16]>)
: full_name_with_scope: (Default/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op12)
...
# In file ./tain_alexnet.py(175)/ x = self.conv3(x)/
...
以上所示文件内容的各行所表示的含义如下:
算子在Host侧(第一行)和Device侧(第二行,有些算子可能不存在)的输入输出情况。从执行图可知,该算子有两个输入(箭头左侧),一个输出(箭头右侧)。
: (<Tensor[Float32], (32, 256, 13, 13)>, <Tensor[Float32], (384, 256, 3, 3)>) -> (<Tensor[Float32], (32, 384, 13, 13)>) : (<Float16xNC1HWC0[const vector][32, 16, 13, 13, 16]>, <Float16xFracZ[const vector][144, 24, 16, 16]>) -> (<Float32xNC1HWC0[const vector][32, 24, 13, 13, 16]>)
算子名称。从执行图可知,该算子在最终执行图中的完整名称为
Default/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op12
。: (Default/network-WithLossCell/_backbone-AlexNet/conv3-Conv2d/Conv2D-op12)
算子对应的训练脚本代码。通过搜索要查询的训练脚本代码,可以找到多个匹配的算子。
# In file {Absolute path of model_zoo}/official/cv/alexnet/src/alexnet.py(175)/ x = self.conv3(x)/
通过算子名称和输入输出信息,可以查找到唯一对应的Tensor数据文件。比如,若要查看Conv2D-op12算子的第1个输出数据对应的Dump文件,可获取以下信息:
operator_name
:Conv2D-op12
。input_output_index
:output.0
表示该文件是该算子的第1个输出Tensor的数据。slot
:0,该算子的输出只有一个slot。
在Dump保存的数据对象文件目录下搜索到相应的文件名:
Conv2D.Conv2D-op12.0.0.1623124369613540.output.0.DefaultFormat.npy
。
还原数据的时候,通过执行:
import numpy
numpy.load("Conv2D.Conv2D-op12.0.0.1623124369613540.output.0.DefaultFormat.npy")
生成numpy.array数据。
异步Dump
大型网络(如Bert Large)使用同步Dump时会导致内存溢出,MindSpore通过异步Dump提供了大型网络的调试能力。
异步Dump操作步骤
创建配置文件
data_dump.json
。JSON文件的名称和位置可以自定义设置。
{ "common_dump_settings": { "dump_mode": 0, "path": "/absolute_path", "net_name": "ResNet50", "iteration": "0|5-8|100-120", "saved_data": "tensor", "input_output": 0, "kernels": ["Default/Conv-op12"], "support_device": [0,1,2,3,4,5,6,7], "op_debug_mode": 0, "file_format": "npy" } }
dump_mode
:设置成0,表示Dump出该网络中的所有算子数据;设置成1,表示Dump"kernels"
里面指定的算子数据或算子类型数据;设置成2,表示Dump脚本中通过set_dump
指定的算子数据,set_dump
的使用详见mindspore.set_dump 。开启溢出检测时,此字段的设置失效,Dump只会保存溢出节点的数据。path
:Dump保存数据的绝对路径。net_name
:自定义的网络名称,例如:”ResNet50”。iteration
:指定需要Dump的迭代。类型为str,用“|”分离要保存的不同区间的step的数据。如”0|5-8|100-120”表示Dump第1个,第6个到第9个, 第101个到第121个step的数据。指定“all”,表示Dump所有迭代的数据。PyNative模式开启溢出检测时,必须设置为”all”。saved_data
: 指定Dump的数据。类型为str,取值成”tensor”,表示Dump出完整张量数据;取值成”statistic”,表示只Dump张量的统计信息;取值”full”代表两种都要。异步Dump统计信息只有在file_format
设置为npy
时可以成功,若在file_format
设置为bin
时选”statistic”或”full”便会错误退出。默认取值为”tensor”。input_output
:设置成0,表示Dump出算子的输入和算子的输出;设置成1,表示Dump出算子的输入;设置成2,表示Dump出算子的输出。kernels
:该项可以配置两种格式:算子的名称列表。开启IR保存开关
set_context(save_graphs=2)
并执行用例,从生成的IR文件trace_code_graph_{graph_id}
中获取算子名称。详细说明可以参照教程:如何保存IR。 需要注意的是,是否设置set_context(save_graphs=2)
可能会导致同一个算子的id不同,所以在Dump指定算子时要在获取算子名称之后保持这一项设置不变。或者也可以在Dump保存的ms_output_trace_code_graph_{graph_id}.ir
文件中获取算子名称,参考同步Dump数据对象目录。还可以指定算子类型。当字符串中不带算子scope信息和算子id信息时,后台则认为其为算子类型,例如:”conv”。算子类型的匹配规则为:当发现算子名中包含算子类型字符串时,则认为匹配成功(不区分大小写),例如:”conv” 可以匹配算子 “Conv2D-op1234”、”Conv3D-op1221”。
support_device
:支持的设备,默认设置成0到7即可;在分布式训练场景下,需要dump个别设备上的数据,可以只在support_device
中指定需要Dump的设备Id。op_debug_mode
:该属性用于算子溢出调试,设置成0,表示不开启溢出;设置成1,表示开启AiCore溢出检测;设置成2,表示开启Atomic溢出检测;设置成3,表示开启全部溢出检测功能。在Dump数据的时候请设置成0,若设置成其他值,则只会Dump溢出算子的数据。file_format
: dump数据的文件类型,只支持npy
和bin
两种取值。设置成npy
,则dump出的算子张量数据将为host侧格式的npy文件;设置成bin
,则dump出的数据将为device侧格式的protobuf文件,需要借助转换工具进行处理,详细步骤请参考异步Dump数据分析样例。默认取值为bin
。
设置数据Dump的环境变量。
export MINDSPORE_DUMP_CONFIG=${Absolute path of data_dump.json}
如果Dump配置文件没有设置
path
字段或者设置为空字符串,还需要配置环境变量MS_DIAGNOSTIC_DATA_PATH
。export MS_DIAGNOSTIC_DATA_PATH=${yyy}
则“$MS_DIAGNOSTIC_DATA_PATH/debug_dump”就会被当做
path
的值。若Dump配置文件中设置了path
字段,则仍以该字段的实际取值为准。在网络脚本执行前,设置好环境变量;网络脚本执行过程中设置将会不生效。
在分布式场景下,Dump环境变量需要在调用
mindspore.communication.init
之前配置。
执行用例Dump数据。
可以在训练脚本中设置
set_context(reserve_class_name_in_scope=False)
,避免Dump文件名称过长导致Dump数据文件生成失败。参考异步Dump数据分析样例解析Dump数据文件。
注意:
若需要dump全量或部分算子,则可以修改json配置文件中的
dump_mode
选项为0或1。对于通信算子(
AllReduce
、AllGather
、ReduceScatter
、Broadcast
、NeighborExchange
、NeighborExchange2
、AlltoAll
),由于在设备上执行时输入地址会被输出覆盖,异步Dump不能直接保存其输入数据,而是会保存其输入算子的输出数据。可以通过ir图查看通信算子的输入算子。使用Dump功能将自动生成最终执行图的IR文件。
异步Dump数据对象目录
若配置文件中file_format
值设置为npy
,则数据对象目录参考同步Dump数据对象目录 。
若未配置file_format
值或file_format
值为bin
,数据对象目录为以下结构。
在Ascend910硬件平台上,异步Dump保存的数据对象包括了最终执行图(ms_output_trace_code_graph_{graph_id}.ir
文件)以及图中算子的输入和输出数据。 如果开启溢出检测,还会在检测到溢出时保存溢出文件(Opdebug.Node_OpDebug.{task_id}.{stream_id}.{timestamp}
文件)。
图模式的Dump目录结构如下所示:
{path}/
- rank_{rank_id}/
- .dump_metadata/
- debug_files (仅在动态shape或者非任务下沉场景开启溢出检测时会有)/
- {iteration_id}/
Opdebug.Node_OpDebug.{task_id}.{stream_id}.{timestamp}
...
- {net_name}/
- {graph_id}/
- {iteration_id}/
statistic.csv
{op_type}.{op_name}.{task_id}.{stream_id}.{timestamp}
Opdebug.Node_OpDebug.{task_id}.{stream_id}.{timestamp} (仅在任务下沉场景开启溢出检测时会有)
mapping.csv
- constants/
Parameter.data-{data_id}.0.0.{timestamp}.output.0.DefaultFormat.npy
...
- graphs/
ms_output_trace_code_graph_{graph_id}.pb
ms_output_trace_code_graph_{graph_id}.ir
- execution_order/
ms_execution_order_graph_{graph_id}.csv
ms_global_execution_order_graph_{graph_id}.csv
PyNative模式的Dump目录结构如下所示:
{path}/
- rank_{rank_id}/
- .dump_metadata/
- debug_files/
- {iteration_id}/
Opdebug.Node_OpDebug.{task_id}.{stream_id}.{timestamp}
...
- {net_name}/
- {graph_id}/
- {iteration_id}/
statistic.csv
{op_type}.{op_name}.{task_id}.{stream_id}.{timestamp}
mapping.csv
- constants/
Parameter.data-{data_id}.0.0.{timestamp}.output.0.DefaultFormat.npy
...
- graphs/
ms_output_trace_code_graph_{graph_id}.pb
ms_output_trace_code_graph_{graph_id}.ir
- execution_order/
ms_execution_order_graph_{graph_id}.csv
ms_global_execution_order_graph_{graph_id}.csv
path
:data_dump.json
配置文件中设置的绝对路径。rank_id
: 逻辑卡号。net_name
:data_dump.json
配置文件中设置的网络名称。graph_id
:训练的图标号。iteration_id
:训练的轮次。op_type
:算子类型。op_name
:算子名称。task_id
:任务标号。stream_id
:流标号。timestamp
:时间戳。data_id
: 常量数据标号。
由于存在控制流,某些子图可能不会被执行,Dump只保存执行过的节点,所以graphs目录下.pb
文件名中的{graph_id}并不一定在{net_name}下存在对应的{graph_id}目录。
对于多图网络,例如动态shape的场景,每张卡上所有计算图的轮次统一计数。
如果按命名规则定义的张量文件名称长度超过了OS文件名称长度限制(一般是255个字符),则会将该张量文件重命名为一串随机数字,映射关系会保存在同目录下的“mapping.csv”。
对于PyNative模式,由于没有前向图,只保存了反向图和优化图,可能出现溢出节点找不到对应的图文件的情况。
PyNative模式下,由于没有前向图,也没有iteration_id,前向节点的graph_id和iteration_id取值为0,不是实际值。对反向节点或者优化器中的节点,数据文件保存在对应的{graph_id}/{iteration_id}目录下,其对应的溢出文件保存在debug_files/0目录下。
异步Dump数据文件介绍
若配置文件中file_format
值设置为npy
,则数据文件介绍参考同步Dump数据文件介绍 。
若未配置file_format
值或file_format
值为bin
,启动训练后,异步Dump生成的原始数据文件或溢出检测生成的溢出文件是protobuf格式的文件,需要用到海思Run包中自带的数据解析工具进行解析,详见如何查看dump数据文件 。
数据在Device侧的格式可能和Host侧计算图中的定义不同,异步Dump的数据格式为Device侧格式,如果想要转为Host侧格式,可以参考如何进行dump数据文件Format转换 。
异步Dump生成的数据文件是bin
文件时,文件命名格式为:
{op_type}.{op_name}.{task_id}.{stream_id}.{timestamp}
以AlexNet网络的Conv2D-op12为例:Conv2D.Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12.2.7.161243956333802
,其中Conv2D
是{op_type}
,Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12
是{op_name}
,2
是{task_id}
,7
是{stream_id}
,161243956333802
是{timestamp}
。
如果op_type
和op_name
中出现了“.”、“/”、“\”、空格时,会转换为下划线表示。
Dump生成的原始数据文件也可以使用MindSpore Insight的数据解析工具DumpParser解析,DumpParser的使用方式详见DumpParser介绍 。MindSpore Insight解析出来的数据格式与同步dump的数据格式完全相同。
若配置file_format
值为npy
,则启用异步dump生成的数据文件命名规则与同步Dump相同,可以参考同步Dump数据文件介绍,溢出检测生成的溢出文件是json
格式,溢出文件内容解析可参考解析算子溢出数据文件 。
选项saved_data
只有在file_format
为”npy”的时候生效。如saved_data
是”statistic”或者”full”。张量统计数据会落盘到statistic.csv
。如saved_data
是”tensor”或者”full”完整张量数据会落盘到{op_type}.{op_name}.{task_id}.{stream_id}.{timestamp}.{input_output_index}.{slot}.{format}.npy
。statistic.csv
的格式与同步Dump相同,可以参考同步Dump数据文件介绍。
异步Dump生成的常量数据文件,最终执行图文件和执行序文件命名规则与同步Dump相同,可以参考同步Dump数据文件介绍。
异步Dump数据分析样例
为了更好地展示使用Dump来保存数据并分析数据的流程,我们提供了一套完整样例脚本 ,异步Dump执行 bash run_async_dump.sh
即可。用户可以自行下载体验。
通过异步Dump的功能,获取到算子异步Dump生成的数据文件。如果异步Dump配置文件中设置的file_format
为”npy”,可以跳过以下步骤中的1、2,如果没有设置file_format
,或者设置为”bin”,需要先转换成.npy
格式的文件。
使用run包中提供的
msaccucmp.py
解析Dump出来的文件。不同的环境上msaccucmp.py
文件所在的路径可能不同,可以通过find
命令进行查找:find ${run_path} -name "msaccucmp.py"
run_path
:run包的安装路径。
找到
msaccucmp.py
后,到/absolute_path
目录下,运行如下命令解析Dump数据:python ${The absolute path of msaccucmp.py} convert -d {file path of dump} -out {file path of output}
{file path of dump} 可以是单个
.bin
文件的路径,也可以是包含.bin
文件的文件夹路径。若需要转换数据格式,可参考使用说明链接https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC1alpha001/devaids/auxiliarydevtool/atlasaccuracy_16_0057.html 。
如Dump生成的数据文件为:
Conv2D.Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12.2.7.161243956333802
则执行:
python3.7.5 msaccucmp.py convert -d /path/to/Conv2D.Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12.2.7.161243956333802 -out ./output -f NCHW -t npy
则可以在
./output
下生成该算子的所有输入输出数据。每个数据以.npy
后缀的文件保存,数据格式为NCHW
。生成结果如下:Conv2D.Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12.2.7.161243956333802.input.0.32x256x13x13.npy Conv2D.Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12.2.7.161243956333802.input.1.384x256x3x3.npy Conv2D.Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12.2.7.161243956333802.output.0.32x384x13x13.npy
在文件名的末尾可以看到该文件是算子的第几个输入或输出,以及数据的维度信息。例如,通过第一个
.npy
文件名Conv2D.Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12.2.7.161243956333802.input.0.32x256x13x13.npy
可知该文件是算子的第0个输入,数据的维度信息是
32x256x13x13
。通过
numpy.load("file_name")
可以读取到对应数据。例:import numpy numpy.load("Conv2D.Default_network-WithLossCell__backbone-AlexNet_conv3-Conv2d_Conv2D-op12.2.7.161243956333802.input.0.32x256x13x13.npy")
注意事项
bfloat16
类型的算子保存npy
文件时,会转换成float32
类型。