文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

PR

小问题,全程线上修改...

一键搞定!

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

依赖控制

下载Notebook下载样例代码查看源文件

如果函数的运行结果依赖或影响外部状态,我们认为该函数具有副作用,比如函数会改变外部全局变量、函数的结果依赖全局变量的值。如果算子会改变输入参数的值或者算子的输出依赖全局参数的值,我们认为这是带副作用的算子。

根据内存属性和IO状态,将副作用划分为内存副作用和IO副作用。当前内存副作用主要有Assign、优化器算子等等,IO副作用主要有Print算子。详细可以查看算子定义,内存副作用算子在定义中有side_effect_mem属性,IO副作用算子在定义中有side_effect_io属性。

Depend用于处理依赖项操作。在大多数情况下,如果操作符有IO副作用或内存副作用,则将根据用户的语义执行它们,不需要另外使用Depend算子来保证执行顺序。在某些情况下,如果两个运算符A和B没有顺序依赖关系,并且A必须在B之前执行,我们建议使用Depend指定它们的执行顺序。使用方法如下:

a = A(x)
b = B(y)

在插入Depend算子后,如下:

a = A(x)
y = Depend(y, a)
b = B(y)

值得说明的是,用于浮点数溢出状态检测的一组特殊算子它们存在隐含副作用,但又不属于IO副作用或内存副作用。此外,使用时还有严格的顺序要求,即:在使用NPUClearFloatStatus算子前需要保证NPUAllocFloatStatus已经执行,使用NPUGetFloatStatus算子前需要保证NPUClearFloatStatus已经执行。因为这些算子使用较少,目前的方案是保持它们的定义为无副作用形式,以Depend确保执行顺序。如下:

[1]:
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import ops, set_context, Tensor
from mindspore import dtype as mstype

set_context(mode=ms.GRAPH_MODE, device_target="Ascend")

class Net(nn.Cell):
    def __init__(self):
        super().__init__()
        self.alloc_status = ops.NPUAllocFloatStatus()
        self.get_status = ops.NPUGetFloatStatus()
        self.clear_status = ops.NPUClearFloatStatus()
        self.sub = ops.Sub()
        self.neg = ops.Neg()

    def construct(self, x):
        init = self.alloc_status()
        clear_status = self.clear_status(init)
        x = ops.depend(x, clear_status)
        res = self.sub(x, self.neg(x))
        init = ops.depend(init, res)
        get_status = self.get_status(init)
        res = ops.depend(res, get_status)
        return res

value = 5
data = np.full((2, 3), value, dtype=np.float16)
x = Tensor(data, dtype=mstype.float16)
net = Net()
res = net(x)
print(res)

运行以上脚本,可以得到:

[[10. 10. 10.]
 [10. 10. 10.]]